Advertisement

Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity

  • S. F. Hassan
  • Rachel A. Rosen
Article

Abstract

In massive gravity and in bimetric theories of gravity, two constraints are needed to eliminate the two phase-space degrees of freedom of the Boulware-Deser ghost. For recently proposed non-linear theories, a Hamiltonian constraint has been shown to exist and an associated secondary constraint was argued to arise as well. In this paper we explicitly demonstrate the existence of the secondary constraint. Thus the Boulware-Deser ghost is completely absent from these non-linear massive gravity theories and from the corresponding bimetric theories. Equivalently, this proves the existence of classically ghost-free theories of massive spin-2 fields, in both fixed and dynamical gravitational backgrounds.

Keywords

Classical Theories of Gravity Space-Time Symmetries 

References

  1. [1]
    D. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. de Rham, G. Gabadadze and A. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. de Rham, G. Gabadadze and A.J. Tolley, Helicity decomposition of ghost-free massive gravity, JHEP 11 (2011) 093 [arXiv:1108.4521] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    C. Deffayet and S. Randjbar-Daemi, Non linear Fierz-Pauli theory from torsion and bigravity, Phys. Rev. D 84 (2011) 044053 [arXiv:1103.2671] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A.H. Chamseddine and V. Mukhanov, Massive gravity simplified: a quadratic action, JHEP 08 (2011) 091 [arXiv:1106.5868] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C. Deffayet and T. Jacobson, On horizon structure of bimetric spacetimes, Class. Quant. Grav. 29 (2012) 065009 [arXiv:1107.4978] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    C. de Rham, G. Gabadadze and A.J. Tolley, Comments on (super)luminality, arXiv:1107.0710 [INSPIRE].
  13. [13]
    S. Folkerts, A. Pritzel and N. Wintergerst, On ghosts in theories of self-interacting massive spin-2 particles, arXiv:1107.3157 [INSPIRE].
  14. [14]
    G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, et al., Massive cosmologies, Phys. Rev. D 84 (2011) 124046 [arXiv:1108.5231] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    K. Koyama, G. Niz and G. Tasinato, The self-accelerating universe with vectors in massive gravity, JHEP 12 (2011) 065 [arXiv:1110.2618] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Alberte, Massive gravity on curved background, arXiv:1110.3818 [INSPIRE].
  18. [18]
    J. Kluson, Hamiltonian analysis of 1 + 1 dimensional massive gravity, Phys. Rev. D 85 (2012) 044010 [arXiv:1110.6158] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Hinterbichler, Theoretical aspects of massive gravity, arXiv:1105.3735 [INSPIRE].
  20. [20]
    S. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Spherically symmetric solutions in ghost-free massive gravity, Phys. Rev. D 85 (2012) 024044 [arXiv:1110.4967] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory, JHEP 01 (2012) 035 [arXiv:1110.6153] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell and S. Hassan, Cosmological solutions in bimetric gravity and their observational tests, JCAP 03 (2012) 042 [arXiv:1111.1655] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    M. Fierz, Force-free particles with any spin, Helv. Phys. Acta 12 (1939) 3 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    J. Kluson, Note about hamiltonian structure of non-linear massive gravity, JHEP 01 (2012) 013 [arXiv:1109.3052] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, gr-qc/0405109 [INSPIRE].
  28. [28]
    J. Khoury, G.E. Miller and A.J. Tolley, Spatially covariant theories of a transverse, traceless graviton, part I: formalism, Phys. Rev. D 85 (2012) 084002 [arXiv:1108.1397] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys. B 282 (1987) 397 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics & The Oskar Klein CentreStockholm University, AlbaNova University CentreStockholmSweden
  2. 2.Physics Department and Institute for Strings, Cosmology, and Astroparticle PhysicsColumbia UniversityNew YorkU.S.A.

Personalised recommendations