Skip to main content
Log in

Weak mixing angle and Higgs mass in Gauge-Higgs unification models with brane kinetic terms

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the constraint of weak mixing angle by introducing localized brane kinetic terms in higher dimensional GHU models with bulk and simple gauge groups. We find that those terms lead to a ratio between Higgs and W boson masses, which is a little bit deviated from the one derived in the standard model. From numerical analysis, we find that the current lower bound on the Higgs mass tends to prefer to exceptional groups E 6, 7, 8 rather than other groups like SU(3l), SO(2n+1), G 2, and F 4 in 6-dimensional (D) GHU models irrespective of the compactification scales. For the compactification scale below 1 TeV, the Higgs masses in 6D GHU models with SU(3l), SO(2n + 1), G 2, and F 4 groups are predicted to be less than the current lower bound unless a model parameter responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally large enough. To see how the situation is changed in more higher dimensional GHU model, we take 7D S 3 / \( {\mathbb{Z}_2} \) and 8D T 4 /Z 2 models. It turns out from our numerical analysis that these higher dimensional GHU models with gauge groups except for E 6 can lead to the Higgs boson whose masses are predicted to be above the current lower bound only for the compatification scale above 1 TeV without taking unnaturally large value of the model parameter, whereas the Higgs masses in the GHU models with E 6 are compatible with the current lower bound even for the compatification scale below 1 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  2. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  3. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  4. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  6. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  8. N. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Fairlie, Higgsfields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979) 97 [INSPIRE].

    ADS  Google Scholar 

  10. P. Forgacs and N. Manton, Space-time symmetries in gauge theories, Commun. Math. Phys. 72 (1980) 15 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. Y. Hosotani, Dynamics of nonintegrable phases and gauge symmetry breaking, Annals Phys. 190 (1989) 233 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    ADS  Google Scholar 

  13. B. Grzadkowski and J. Wudka, 5-Dimensional difficulties of Gauge-Higgs unifications, Phys. Rev. Lett. 97 (2006) 211602 [hep-ph/0604225] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Aranda and J. Wudka, Constraints on realistic Gauge-Higgs unified models, Phys. Rev. D 82 (2010) 096005 [arXiv:1008.3945] [INSPIRE].

    ADS  Google Scholar 

  15. G. Burdman and Y. Nomura, Unification of Higgs and gauge fields in five-dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Aranda and J.L. Diaz-Cruz, Gauge-Higgs unification with brane kinetic terms, Phys. Lett. B 633 (2006) 591 [hep-ph/0510138] [INSPIRE].

    ADS  Google Scholar 

  18. G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in flat extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].

    Article  ADS  Google Scholar 

  19. I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].

    Article  ADS  Google Scholar 

  20. C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Bhattacharyya, A pedagogical review of electroweak symmetry breaking scenarios, Rept. Prog. Phys. 74 (2011) 026201 [arXiv:0910.5095] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.S. Carena, T.M. Tait and C. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. B. Grzadkowski and J. Wudka, Majorana fermions and CP-violation from 5-dimensional theories: a systematic approach, Phys. Rev. D 72 (2005) 125012 [hep-ph/0501238] [INSPIRE].

    ADS  Google Scholar 

  26. B. Grzadkowski and J. Wudka, Light excitations in 5-dimensional gauge theories, Acta Phys. Polon. B 36 (2005) 3523 [hep-ph/0511139] [INSPIRE].

    ADS  Google Scholar 

  27. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  28. F. del Aguila, M. Pérez-Victoria and J. Santiago, Bulk fields with general brane kinetic terms, JHEP 02 (2003) 051 [hep-th/0302023] [INSPIRE].

    Article  Google Scholar 

  29. M.S. Carena, E. Ponton, T.M. Tait and C. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].

    ADS  Google Scholar 

  30. H. Davoudiasl, J. Hewett, B. Lillie and T. Rizzo, Warped Higgsless models with IR brane kinetic terms, JHEP 05 (2004) 015 [hep-ph/0403300] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Chaichian and A. Kobakhidze, Kaluza-Klein decomposition and gauge coupling unification in orbifold GUTs, hep-ph/0208129 [INSPIRE].

  32. LEP Working Group for Higgs boson searches, ALEPH, ELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

  33. LEP Electroweak Working Group, http://lepewwg.web.cern.ch.

  34. C. Scrucca, M. Serone, L. Silvestrini and A. Wulzer, Gauge Higgs unification in orbifold models, JHEP 02 (2004) 049 [hep-th/0312267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Gilmore, Lie groups, Lie algebras, and some of their applications, Dover Publications Inc., New York U.S.A. (2005).

    Google Scholar 

  36. Recently interesting models with brane localized terms on a flat 5D space are proposed. In detail, see the paper, G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in flat extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin Kyu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Kang, S.K. Weak mixing angle and Higgs mass in Gauge-Higgs unification models with brane kinetic terms. J. High Energ. Phys. 2012, 101 (2012). https://doi.org/10.1007/JHEP04(2012)101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)101

Keywords

Navigation