On the origin of gravity and the laws of Newton


Starting from first principles and general assumptions we present a heuristic argument that shows that Newton’s law of gravitation naturally arises in a theory in which space emerges through a holographic scenario. Gravity is identified with an entropic force caused by changes in the information associated with the positions of material bodies. A relativistic generalization of the presented arguments directly leads to the Einstein equations. When space is emergent even Newton’s law of inertia needs to be explained. The equivalence principle auggests that it is actually the law of inertia whose origin is entropic.


  1. [1]

    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. [2]

    J.M. Bardeen, B. Carter and S.W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  3. [3]

    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  4. [4]

    P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A 8 (1975) 609 [SPIRES].

    ADS  Google Scholar 

  5. [5]

    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [SPIRES].

    ADS  Google Scholar 

  6. [6]

    T. Damour, Surface effects in black hole physics, in Proceedings of the Second Marcel Grossmann Meeting on General Relativity, R. Ruffini ed., North Holland, (1982).

  7. [7]

    T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  8. [8]

    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [SPIRES].

  9. [9]

    L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. [10]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    R.M. Wald, General Relativity, The University of Chicago Press, (1984).

  12. [12]

    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. [13]

    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].

  14. [14]

    T. Padmanabhan, Thermodynamical Aspects of Gravity: New insights, Rept. Prog. Phys. 73 (2010) 046901 [arXiv:0911.5004] [SPIRES].

    ADS  Article  Google Scholar 

  15. [15]

    J.D. Bekenstein, A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems, Phys. Rev. D 23 (1981) 287 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. [16]

    E.P. Verlinde, to appear.

Download references

Author information



Corresponding author

Correspondence to Erik Verlinde.

Additional information

ArXiv ePrint: 1001.0785

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energ. Phys. 2011, 29 (2011). https://doi.org/10.1007/JHEP04(2011)029

Download citation


  • Gauge-gravity correspondence
  • Models of Quantum Gravity