Skip to main content

More on holographic correlators: twisted and dimensionally reduced structures

A preprint version of the article is available at arXiv.

Abstract

Recently four-point holographic correlators with arbitrary external BPS operators were constructively derived in [1, 2] at tree-level for maximally superconformal theories. In this paper, we capitalize on these theoretical data, and perform a detailed study of their analytic properties. We point out that these maximally supersymmetric holographic correlators exhibit a hidden dimensional reduction structure à la Parisi and Sourlas. This emergent structure allows the correlators to be compactly expressed in terms of only scalar exchange diagrams in a dimensionally reduced spacetime, where formally both the AdS and the sphere factors have four dimensions less. We also demonstrate the superconformal properties of holographic correlators under the chiral algebra and topological twistings. For AdS5 × S5 and AdS7 × S4, we obtain closed form expressions for the meromorphic twisted correlators from the maximally R-symmetry violating limit of the holographic correlators. The results are compared with independent field theory computations in 4d \( \mathcal{N} \) = 4 SYM and the 6d (2, 0) theory, finding perfect agreement. For AdS4 × S7, we focus on an infinite family of near-extremal four-point correlators, and extract various protected OPE coefficients from supergravity. These OPE coefficients provide new holographic predictions to be matched by future supersymmetric localization calculations. In deriving these results, we also develop many technical tools which should have broader applicability beyond studying holographic correlators.

References

  1. [1]

    L. F. Alday and X. Zhou, All Tree-Level Correlators for M-theory on AdS7 × S4, Phys. Rev. Lett. 125 (2020) 131604 [arXiv:2006.06653] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  2. [2]

    L. F. Alday and X. Zhou, All Holographic Four-Point Functions in All Maximally Supersymmetric CFTs, Phys. Rev. X 11 (2021) 011056 [arXiv:2006.12505] [INSPIRE].

    Google Scholar 

  3. [3]

    E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  5. [5]

    G. Arutyunov and E. Sokatchev, Implications of superconformal symmetry for interacting (2, 0) tensor multiplets, Nucl. Phys. B 635 (2002) 3 [hep-th/0201145] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    G. Arutyunov and E. Sokatchev, On a large N degeneracy in N = 4 SYM and the AdS/CFT correspondence, Nucl. Phys. B 663 (2003) 163 [hep-th/0301058] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    G. Arutyunov, F. A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    G. Arutyunov and S. Frolov, Scalar quartic couplings in type IIB supergravity on AdS5 × S5, Nucl. Phys. B 579 (2000) 117 [hep-th/9912210] [INSPIRE].

    MATH  Article  Google Scholar 

  9. [9]

    L. Rastelli and X. Zhou, Mellin amplitudes for AdS5 × S5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].

    Article  Google Scholar 

  10. [10]

    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    L. Rastelli and X. Zhou, Holographic Four-Point Functions in the (2, 0) Theory, JHEP 06 (2018) 087 [arXiv:1712.02788] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    X. Zhou, On Superconformal Four-Point Mellin Amplitudes in Dimension d > 2, JHEP 08 (2018) 187 [arXiv:1712.02800] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    X. Zhou, On Mellin Amplitudes in SCFTs with Eight Supercharges, JHEP 07 (2018) 147 [arXiv:1804.02397] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    G. Parisi and N. Sourlas, Random Magnetic Fields, Supersymmetry and Negative Dimensions, Phys. Rev. Lett. 43 (1979) 744 [INSPIRE].

    Article  Google Scholar 

  15. [15]

    A. Kaviraj, S. Rychkov and E. Trevisani, Random Field Ising Model and Parisi-Sourlas supersymmetry. Part I. Supersymmetric CFT, JHEP 04 (2020) 090 [arXiv:1912.01617] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    S. Caron-Huot and A.-K. Trinh, All tree-level correlators in AdS5 × S5 supergravity: hidden ten-dimensional conformal symmetry, JHEP 01 (2019) 196 [arXiv:1809.09173] [INSPIRE].

    MATH  Article  Google Scholar 

  17. [17]

    L. Rastelli, K. Roumpedakis and X. Zhou, AdS3 × S3 Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry, JHEP 10 (2019) 140 [arXiv:1905.11983] [INSPIRE].

    MATH  Article  Google Scholar 

  18. [18]

    S. Giusto, R. Russo, A. Tyukov and C. Wen, The CFT6 origin of all tree-level 4-point correlators in AdS3 × S3, Eur. Phys. J. C 80 (2020) 736 [arXiv:2005.08560] [INSPIRE].

    Article  Google Scholar 

  19. [19]

    X. Zhou, How to Succeed at Witten Diagram Recursions without Really Trying, JHEP 08 (2020) 077 [arXiv:2005.03031] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    C. Beem, L. Rastelli and B. C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    S. M. Chester, J. Lee, S. S. Pufu and R. Yacoby, Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys. 354 (2017) 345 [arXiv:1601.05378] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE in \( \mathcal{N} \) = 2 superconformal theories, JHEP 02 (2016) 019 [arXiv:1509.00033] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    M. Lemos and P. Liendo, \( \mathcal{N} \) = 2 central charge bounds from 2d chiral algebras, JHEP 04 (2016) 004 [arXiv:1511.07449] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  26. [26]

    C. Beem, Flavor Symmetries and Unitarity Bounds in \( \mathcal{N} \) = 2 Superconformal Field Theories, Phys. Rev. Lett. 122 (2019) 241603 [arXiv:1812.06099] [INSPIRE].

    Article  Google Scholar 

  27. [27]

    C. Beem, L. Rastelli and B. C. van Rees, The \( \mathcal{N} \) = 4 Superconformal Bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

    Article  Google Scholar 

  28. [28]

    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B. C. van Rees, The \( \mathcal{N} \) = 2 superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].

    MATH  Article  Google Scholar 

  29. [29]

    C. Beem, M. Lemos, L. Rastelli and B. C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \( \mathcal{N} \) = 3 superconformal theories, JHEP 04 (2017) 032 [arXiv:1612.01536] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    C. Beem, L. Rastelli and B. C. van Rees, More \( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  32. [32]

    N. B. Agmon, S. M. Chester and S. S. Pufu, Solving M-theory with the Conformal Bootstrap, JHEP 06 (2018) 159 [arXiv:1711.07343] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    N. B. Agmon, S. M. Chester and S. S. Pufu, The M-theory Archipelago, JHEP 02 (2020) 010 [arXiv:1907.13222] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    A. Gimenez-Grau and P. Liendo, Bootstrapping Coulomb and Higgs branch operators, JHEP 01 (2021) 175 [arXiv:2006.01847] [INSPIRE].

    Article  Google Scholar 

  35. [35]

    A. Bissi, A. Manenti and A. Vichi, Bootstrapping mixed correlators in \( \mathcal{N} \) = 4 Super Yang-Mills, arXiv:2010.15126 [INSPIRE].

  36. [36]

    D. J. Binder, S. M. Chester, M. Jerdee and S. S. Pufu, The 3d \( \mathcal{N} \) = 6 Bootstrap: From Higher Spins to Strings to Membranes, arXiv:2011.05728 [INSPIRE].

  37. [37]

    F. Bonetti and L. Rastelli, Supersymmetric localization in AdS5 and the protected chiral algebra, JHEP 08 (2018) 098 [arXiv:1612.06514] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    M. Mezei, S. S. Pufu and Y. Wang, A 2d/1d Holographic Duality, arXiv:1703.08749 [INSPIRE].

  39. [39]

    A. Feldman, On a gravity dual to flavored topological quantum mechanics, JHEP 10 (2020) 113 [arXiv:2005.12228] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    C. Beem, W. Peelaers, L. Rastelli and B. C. van Rees, Chiral algebras of class S, JHEP 05 (2015) 020 [arXiv:1408.6522] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    M. Lemos and W. Peelaers, Chiral Algebras for Trinion Theories, JHEP 02 (2015) 113 [arXiv:1411.3252] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    F. Bonetti, C. Meneghelli and L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, JHEP 05 (2019) 155 [arXiv:1810.03612] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  43. [43]

    M. Dedushenko, S. S. Pufu and R. Yacoby, A one-dimensional theory for Higgs branch operators, JHEP 03 (2018) 138 [arXiv:1610.00740] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    M. Dedushenko, Y. Fan, S. S. Pufu and R. Yacoby, Coulomb Branch Operators and Mirror Symmetry in Three Dimensions, JHEP 04 (2018) 037 [arXiv:1712.09384] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  45. [45]

    M. Dedushenko, Y. Fan, S. S. Pufu and R. Yacoby, Coulomb Branch Quantization and Abelianized Monopole Bubbling, JHEP 10 (2019) 179 [arXiv:1812.08788] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    R. Panerai, A. Pittelli and K. Polydorou, Topological Correlators and Surface Defects from Equivariant Cohomology, JHEP 09 (2020) 185 [arXiv:2006.06692] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    Y. Pan and W. Peelaers, Chiral Algebras, Localization and Surface Defects, JHEP 02 (2018) 138 [arXiv:1710.04306] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    Y. Pan and W. Peelaers, Schur correlation functions on S3 × S1, JHEP 07 (2019) 013 [arXiv:1903.03623] [INSPIRE].

    MATH  Article  Google Scholar 

  49. [49]

    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    D. Bashkirov and A. Kapustin, Dualities between N = 8 superconformal field theories in three dimensions, JHEP 05 (2011) 074 [arXiv:1103.3548] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    M. Headrick, A. Maloney, E. Perlmutter and I. G. Zadeh, Rényi entropies, the analytic bootstrap, and 3D quantum gravity at higher genus, JHEP 07 (2015) 059 [arXiv:1503.07111] [INSPIRE].

    MATH  Article  Google Scholar 

  52. [52]

    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    F. A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP 09 (2004) 056 [hep-th/0405180] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  54. [54]

    M. J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  56. [56]

    Y. Hatsuda, Spectral zeta function and non-perturbative effects in ABJM Fermi-gas, JHEP 11 (2015) 086 [arXiv:1503.07883] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    H. Osborn and A. C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    M. Cornagliotto, M. Lemos and V. Schomerus, Long Multiplet Bootstrap, JHEP 10 (2017) 119 [arXiv:1702.05101] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  59. [59]

    Y. Oshima and M. Yamazaki, Determinant formula for parabolic Verma modules of Lie superalgebras, J. Algebra 495 (2018) 51 [arXiv:1603.06705] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    K. Sen and M. Yamazaki, Polology of Superconformal Blocks, Commun. Math. Phys. 374 (2019) 785 [arXiv:1810.01264] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    P. Bowcock, Quasi-primary Fields and Associativity of Chiral Algebras, Nucl. Phys. B 356 (1991) 367 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  62. [62]

    M. S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    M. S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    MATH  Article  Google Scholar 

  64. [64]

    J.-F. Fortin and W. Skiba, New methods for conformal correlation functions, JHEP 06 (2020) 028 [arXiv:1905.00434] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].

  66. [66]

    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B. C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    F. Aprile, J. Drummond, P. Heslop and H. Paul, One-loop amplitudes in AdS5 × S5 supergravity from \( \mathcal{N} \) = 4 SYM at strong coupling, JHEP 03 (2020) 190 [arXiv:1912.01047] [INSPIRE].

    MATH  Article  Google Scholar 

  69. [69]

    L. F. Alday and X. Zhou, Simplicity of AdS Supergravity at One Loop, JHEP 09 (2020) 008 [arXiv:1912.02663] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  70. [70]

    E. D’Hoker, D. Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    J. Penedones, J. A. Silva and A. Zhiboedov, Nonperturbative Mellin Amplitudes: Existence, Properties, Applications, JHEP 08 (2020) 031 [arXiv:1912.11100] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  72. [72]

    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  73. [73]

    R. Corrado, B. Florea and R. McNees, Correlation functions of operators and Wilson surfaces in the d = 6, (0, 2) theory in the large N limit, Phys. Rev. D 60 (1999) 085011 [hep-th/9902153] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  74. [74]

    F. Bastianelli and R. Zucchini, Three point functions of chiral primary operators in d = 3, N = 8 and d = 6, N = (2, 0) SCFT at large N , Phys. Lett. B 467 (1999) 61 [hep-th/9907047] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  75. [75]

    S. Giombi, H. Khanchandani and X. Zhou, Aspects of CFTs on Real Projective Space, J. Phys. A 54 (2021) 024003 [arXiv:2009.03290] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  76. [76]

    L. F. Alday, C. Behan, P. Ferrero and X. Zhou, Gluon Scattering in AdS from CFT, arXiv:2103.15830 [INSPIRE].

  77. [77]

    L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  78. [78]

    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  79. [79]

    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  80. [80]

    F. Aprile, J. Drummond, P. Heslop and H. Paul, Double-trace spectrum of N = 4 supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. D 98 (2018) 126008 [arXiv:1802.06889] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  81. [81]

    C. Cordova, T. T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  82. [82]

    M. Hogervorst and B. C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193 [arXiv:1702.08471] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  83. [83]

    C. P. Herzog, I. R. Klebanov, S. S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

    Article  Google Scholar 

  84. [84]

    M. Mezei and S. S. Pufu, Three-sphere free energy for classical gauge groups, JHEP 02 (2014) 037 [arXiv:1312.0920] [INSPIRE].

    Article  Google Scholar 

  85. [85]

    J. Bourdier, N. Drukker and J. Felix, The exact Schur index of \( \mathcal{N} \) = 4 SYM, JHEP 11 (2015) 210 [arXiv:1507.08659] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  86. [86]

    D. Gaiotto and J. Abajian, Twisted M2 brane holography and sphere correlation functions, arXiv:2004.13810 [INSPIRE].

  87. [87]

    S. M. Chester, AdS4/CFT3 for unprotected operators, JHEP 07 (2018) 030 [arXiv:1803.01379] [INSPIRE].

    Article  Google Scholar 

  88. [88]

    F. A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  89. [89]

    M. Buican, J. Hayling and C. Papageorgakis, Aspects of Superconformal Multiplets in D > 4, JHEP 11 (2016) 091 [arXiv:1606.00810] [INSPIRE].

    MATH  Article  Google Scholar 

  90. [90]

    S. Lee and S. Lee, Notes on superconformal representations in two dimensions, Nucl. Phys. B 956 (2020) 115033 [arXiv:1911.10391] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  91. [91]

    N. B. Agmon and Y. Wang, Classifying Superconformal Defects in Diverse Dimensions Part I: Superconformal Lines, arXiv:2009.06650 [INSPIRE].

  92. [92]

    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  93. [93]

    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP 03 (2019) 052 [arXiv:1808.00612] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  94. [94]

    R. Gopakumar and A. Sinha, On the Polyakov-Mellin bootstrap, JHEP 12 (2018) 040 [arXiv:1809.10975] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  95. [95]

    M. S. Milgram, 447 instances of hypergeometric 3F2(1), arXiv:1105.3126.

  96. [96]

    V. Gonçalves, R. Pereira and X. Zhou, 20′ Five-Point Function from AdS5 × S5 Supergravity, JHEP 10 (2019) 247 [arXiv:1906.05305] [INSPIRE].

    MATH  Article  Google Scholar 

  97. [97]

    D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP 02 (2018) 081 [arXiv:1706.07813] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  98. [98]

    M. S. Costa and T. Hansen, AdS Weight Shifting Operators, JHEP 09 (2018) 040 [arXiv:1805.01492] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  99. [99]

    D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G. L. Pimentel, The cosmological bootstrap: weight-shifting operators and scalar seeds, JHEP 12 (2020) 204 [arXiv:1910.14051] [INSPIRE].

    Article  Google Scholar 

  100. [100]

    O. Aharony, L. F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  101. [101]

    L. F. Alday and S. Caron-Huot, Gravitational S-matrix fromCFT dispersion relations, JHEP 12 (2018) 017 [arXiv:1711.02031] [INSPIRE].

    MATH  Article  Google Scholar 

  102. [102]

    H. W. Lin, Bootstraps to strings: solving random matrix models with positivite, JHEP 06 (2020) 090 [arXiv:2002.08387] [INSPIRE].

    Article  Google Scholar 

  103. [103]

    X. Han, S. A. Hartnoll and J. Kruthoff, Bootstrapping Matrix Quantum Mechanics, Phys. Rev. Lett. 125 (2020) 041601 [arXiv:2004.10212] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  104. [104]

    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  105. [105]

    L. F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS5 × S5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].

    Article  Google Scholar 

  106. [106]

    F. Aprile, J. M. Drummond, P. Heslop and H. Paul, Unmixing Supergravity, JHEP 02 (2018) 133 [arXiv:1706.08456] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinan Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.04114

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behan, C., Ferrero, P. & Zhou, X. More on holographic correlators: twisted and dimensionally reduced structures. J. High Energ. Phys. 2021, 8 (2021). https://doi.org/10.1007/JHEP04(2021)008

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2021)008

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Extended Supersymmetry
  • Scattering Amplitudes