Segmented strings coupled to a B-field

Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

In this paper we study segmented strings in AdS3 coupled to a background two-form whose field strength is proportional to the volume form. By changing the coupling, the theory interpolates between the Nambu-Goto string and the SL(2, ℝ) Wess-Zumino-Witten model. In terms of the kink momentum vectors, the action is independent of the coupling and the classical theory reduces to a single discrete-time Toda-type theory. The WZW model is a singular point in coupling space where the map into Toda variables degenerates.

Keywords

Integrable Field Theories Long strings AdS-CFT Correspondence Bosonic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W.A. Bardeen, I. Bars, A.J. Hanson and R.D. Peccei, A study of the longitudinal kink modes of the string, Phys. Rev. D 13 (1976) 2364 [INSPIRE].ADSGoogle Scholar
  2. [2]
    X. Artru, Classical string phenomenology. 1. How strings work, Phys. Rept. 97 (1983) 147 [INSPIRE].
  3. [3]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Vegh, The broken string in anti-de Sitter space, JHEP 02 (2018) 045 [arXiv:1508.06637] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Callebaut, S.S. Gubser, A. Samberg and C. Toldo, Segmented strings in AdS 3, JHEP 11 (2015) 110 [arXiv:1508.07311] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Vegh, Colliding waves on a string in AdS 3, arXiv:1509.05033 [INSPIRE].
  7. [7]
    S.S. Gubser, Evolution of segmented strings, Phys. Rev. D 94 (2016) 106007 [arXiv:1601.08209] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    S.S. Gubser, S. Parikh and P. Witaszczyk, Segmented strings and the McMillan map, JHEP 07 (2016) 122 [arXiv:1602.00679] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Ficnar and S.S. Gubser, Finite momentum at string endpoints, Phys. Rev. D 89 (2014) 026002 [arXiv:1306.6648] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Vegh, Segmented strings from a different angle, arXiv:1601.07571 [INSPIRE].
  11. [11]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, R) WZW model 1: the spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CFT 2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  13. [13]
    B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    A. Babichenko, A. Dekel and O. Ohlsson Sax, Finite-gap equations for strings on AdS 3 × S 3 × T 4 with mixed 3-form flux, JHEP 11 (2014) 122 [arXiv:1405.6087] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., The complete worldsheet S matrix of superstrings on AdS 3 × S 3 × T 4 with mixed three-form flux, Nucl. Phys. B 891 (2015) 570 [arXiv:1410.0866] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., The AdS 3 × S 3 × S 3 × S 1 worldsheet S matrix, J. Phys. A 48 (2015) 415401 [arXiv:1506.00218] [INSPIRE].MATHGoogle Scholar
  17. [17]
    Y.B. Suris, The problem of integrable discretization: Hamiltonian approach, Birkhäuser Verlag, Basel Switzerland, (2003).CrossRefMATHGoogle Scholar
  18. [18]
    A. Mikhailov, Nonlinear waves in AdS/CFT correspondence, hep-th/0305196 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center of Mathematical Sciences and ApplicationsHarvard UniversityCambridgeU.S.A.

Personalised recommendations