Quantum noncommutative ABJM theory: first steps

  • Carmelo P. Martin
  • Josip Trampetic
  • Jiangyang You
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We introduce ABJM quantum field theory in the noncommutative spacetime by using the component formalism and show that it is \( \mathcal{N} \) = 6 supersymmetric. For the U(1) κ × U(1)κ case, we compute all one-loop 1PI two and three point functions in the Landau gauge and show that they are UV finite and have well-defined commutative limits θ μν → 0, corresponding exactly to the 1PI functions of the ordinary ABJM field theory. This result also holds for all one-loop functions which are UV finite by power counting. It seems that the noncommutative quantum ABJM field theory is free from the noncommutative IR instabilities.

Keywords

Chern-Simons Theories Non-Commutative Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Dabholkar, N. Drukker and J. Gomes, Localization in supergravity and quantum AdS 4 /CFT 3 holography, JHEP 10 (2014) 90 [arXiv:1406.0505] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and applications, Cambridge University Press, (2015).Google Scholar
  6. [6]
    Y. Bea, N. Jokela, M. Lippert, A.V. Ramallo and D. Zoakos, Flux and Hall states in ABJM with dynamical flavors, JHEP 03 (2015) 009 [arXiv:1411.3335] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Studies of the ABJM Theory in a Formulation with Manifest SU(4) R-Symmetry, JHEP 09 (2008) 027 [arXiv:0807.0880] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    O.-K. Kwon, P. Oh and J. Sohn, Notes on Supersymmetry Enhancement of ABJM Theory, JHEP 08 (2009) 093 [arXiv:0906.4333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    I.L. Buchbinder, E.A. Ivanov, O. Lechtenfeld, N.G. Pletnev, I.B. Samsonov and B.M. Zupnik, ABJM models in N = 3 harmonic superspace, JHEP 03 (2009) 096 [arXiv:0811.4774] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    I.L. Buchbinder, E.A. Ivanov, O. Lechtenfeld, N.G. Pletnev, I.B. Samsonov and B.M. Zupnik, Quantum N = 3, d = 3 Chern-Simons Matter Theories in Harmonic Superspace, JHEP 10 (2009) 075 [arXiv:0909.2970] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    T. Bargheer, F. Loebbert and C. Meneghelli, Symmetries of Tree-level Scattering Amplitudes in N = 6 Superconformal Chern-Simons Theory, Phys. Rev. D 82 (2010) 045016 [arXiv:1003.6120] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Bargheer, N. Beisert, F. Loebbert and T. McLoughlin, Conformal Anomaly for Amplitudes in \( \mathcal{N} \) = 6 Superconformal Chern-Simons Theory, J. Phys. A 45 (2012) 475402 [arXiv:1204.4406] [INSPIRE].
  13. [13]
    M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, One Loop Amplitudes In ABJM, JHEP 07 (2012) 029 [arXiv:1204.4407] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    S. Lee, Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 105 (2010) 151603 [arXiv:1007.4772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    H. Elvang et al., Grassmannians for scattering amplitudes in 4d \( \mathcal{N} \) = 4 SYM and 3d ABJM, JHEP 12 (2014) 181 [arXiv:1410.0621] [INSPIRE].
  16. [16]
    N. Beisert, A. Garus and M. Rosso, Yangian Symmetry and Integrability of Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 118 (2017) 141603 [arXiv:1701.09162] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    E. Fradkin, V. Jejjala and R.G. Leigh, Noncommutative Chern-Simons for the quantum Hall system and duality, Nucl. Phys. B 642 (2002) 483 [cond-mat/0205653] [INSPIRE].
  19. [19]
    E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    E. Colgáin and A. Pittelli, A requiem for AdS 4 × ℂP 3 Fermionic self-T-duality, Phys. Rev. D 94 (2016) 106006 [arXiv:1609.03254] [INSPIRE].
  21. [21]
    R.D. Pisarski and S. Rao, Topologically Massive Chromodynamics in the Perturbative Regime, Phys. Rev. D 32 (1985) 2081 [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl. Phys. B 591 (2000) 265 [hep-th/0005129] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    O. Aharony, J. Gomis and T. Mehen, On theories with lightlike noncommutativity, JHEP 09 (2000) 023 [hep-th/0006236] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    E.E. Boos and A.I. Davydychev, A Method of the Evaluation of the Vertex Type Feynman Integrals, Moscow Univ. Phys. Bull. 42N3 (1987) 6 [Vestn. Mosk. Univ. Fiz. Astron. 28N3 (1987) 8].Google Scholar
  25. [25]
    D.J. Gross, A. Hashimoto and N. Itzhaki, Observables of noncommutative gauge theories, Adv. Theor. Math. Phys. 4 (2000) 893 [hep-th/0008075] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    J.M. Maldacena and J.G. Russo, Large N limit of noncommutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996) 53 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Guica, F. Levkovich-Maslyuk and K. Zarembo, Integrability in dipole-deformed \( \mathbf{\mathcal{N}}=\mathbf{4} \) super Yang-Mills, J. Phys. A 50 (2017) 394001 [arXiv:1706.07957] [INSPIRE].MathSciNetMATHGoogle Scholar
  31. [31]
    K. Landsteiner and J. Mas, The Shear viscosity of the non-commutative plasma, JHEP 07 (2007) 088 [arXiv:0706.0411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].MATHGoogle Scholar
  33. [33]
    M. García Pérez, A. González-Arroyo and M. Okawa, Spatial volume dependence for 2+1 dimensional SU(N ) Yang-Mills theory, JHEP 09 (2013) 003 [arXiv:1307.5254] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Carmelo P. Martin
    • 1
  • Josip Trampetic
    • 2
    • 3
  • Jiangyang You
    • 4
  1. 1.Departamento de Física Teórica I, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.Rudjer Bošković Institute, Division of Experimental PhysicsZagrebCroatia
  3. 3.Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut)MünchenGermany
  4. 4.Rudjer Bošković Institute, Division of Physical ChemistryZagrebCroatia

Personalised recommendations