Correlation functions of warped CFT

  • Wei Song
  • Jianfei Xu
Open Access
Regular Article - Theoretical Physics


Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green’s function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.


Field Theories in Lower Dimensions Conformal Field Theory Conformal and W Symmetry Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].Google Scholar
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. C-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  7. [7]
    A. Bagchi, M. Gary and Zodinmawia, Bondi-Metzner-Sachs bootstrap, Phys. Rev. D 96 (2017) 025007 [arXiv:1612.01730] [INSPIRE].
  8. [8]
    A. Bagchi, M. Gary and Zodinmawia, The nuts and bolts of the BMS bootstrap, Class. Quant. Grav. 34 (2017) 174002 [arXiv:1705.05890] [INSPIRE].
  9. [9]
    D.M. Hofman and A. Strominger, Chiral scale and conformal invariance in 2D quantum field theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Detournay, T. Hartman and D.M. Hofman, Warped conformal field theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Compère, W. Song and A. Strominger, Chiral Liouville gravity, JHEP 05 (2013) 154 [arXiv:1303.2660] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D.M. Hofman and B. Rollier, Warped conformal field theory as lower spin gravity, Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Castro, D.M. Hofman and G. Sárosi, Warped Weyl fermion partition functions, JHEP 11 (2015) 129 [arXiv:1508.06302] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Castro, D.M. Hofman and N. Iqbal, Entanglement entropy in warped conformal field theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    W. Song, Q. Wen and J. Xu, Modifications to holographic entanglement entropy in warped CFT, JHEP 02 (2017) 067 [arXiv:1610.00727] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    G. Compère and S. Detournay, Boundary conditions for spacelike and timelike warped AdS 3 spaces in topologically massive gravity, JHEP 08 (2009) 092 [arXiv:0906.1243] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Compère, W. Song and A. Strominger, New boundary conditions for AdS 3, JHEP 05 (2013) 152 [arXiv:1303.2662] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefGoogle Scholar
  31. [31]
    J.M. Maldacena and A. Strominger, Universal low-energy dynamics for rotating black holes, Phys. Rev. D 56 (1997) 4975 [hep-th/9702015] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  33. [33]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  34. [34]
    A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114 (2015) 111602 [arXiv:1410.4089] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Basu and M. Riegler, Wilson lines and holographic entanglement entropy in galilean conformal field theories, Phys. Rev. D 93 (2016) 045003 [arXiv:1511.08662] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    H. Jiang, W. Song and Q. Wen, Entanglement entropy in flat holography, JHEP 07 (2017) 142 [arXiv:1706.07552] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G. Compère, M. Guica and M.J. Rodriguez, Two Virasoro symmetries in stringy warped AdS 3, JHEP 12 (2014) 012 [arXiv:1407.7871] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Chen, B. Ning and Z.-b. Xu, Real-time correlators in warped AdS/CFT correspondence, JHEP 02 (2010) 031 [arXiv:0911.0167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    W. Song, Q. Wen and J. Xu, Generalized gravitational entropy for warped Anti-de Sitter space, Phys. Rev. Lett. 117 (2016) 011602 [arXiv:1601.02634] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Detournay and M. Guica, Stringy Schrödinger truncations, JHEP 08 (2013) 121 [arXiv:1212.6792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    B. Chen and C.-S. Chu, Real-time correlators in Kerr/CFT correspondence, JHEP 05 (2010) 004 [arXiv:1001.3208] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Bagchi and I. Mandal, On representations and correlation functions of galilean conformal algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    A. Bagchi, Topologically massive gravity and galilean conformal algebra: a study of correlation functions, JHEP 02 (2011) 091 [arXiv:1012.3316] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina

Personalised recommendations