Advertisement

The exceptional sigma model

  • Alex S. Arvanitakis
  • Chris D. A. Blair
Open Access
Regular Article - Theoretical Physics

Abstract

We detail the construction of the exceptional sigma model, which describes a string propagating in the “extended spacetime” of exceptional field theory. This is to U-duality as the doubled sigma model is to T-duality. Symmetry specifies the Weylinvariant Lagrangian uniquely and we show how it reduces to the correct 10-dimensional string Lagrangians. We also consider the inclusion of a Fradkin-Tseytlin (or generalised dilaton) coupling as well as a reformulation with dynamical tension.

Keywords

M-Theory String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].
  4. [4]
    C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
  7. [7]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  14. [14]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  15. [15]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  16. [16]
    O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP 04 (2015) 050 [arXiv:1501.01600] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].
  18. [18]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)ℝ+ exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].
  20. [20]
    A.S. Arvanitakis and C.D.A. Blair, Type II strings are Exceptional, arXiv:1712.07115 [INSPIRE].
  21. [21]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background Field Equations for the Duality Symmetric String, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D.S. Berman and D.C. Thompson, Duality Symmetric Strings, Dilatons and O(d, d) Effective Actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [INSPIRE].
  24. [24]
    N.B. Copland, A Double σ-model for Double Field Theory, JHEP 04 (2012) 044 [arXiv:1111.1828] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].
  26. [26]
    T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].
  27. [27]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.J. Duff and J.X. Lu, Duality Rotations in Membrane Theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].
  29. [29]
    M.J. Duff, J.X. Lu, R. Percacci, C.N. Pope, H. Samtleben and E. Sezgin, Membrane Duality Revisited, Nucl. Phys. B 901 (2015) 1 [arXiv:1509.02915] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C.D.A. Blair, Particle actions and brane tensions from double and exceptional geometry, JHEP 10 (2017) 004 [arXiv:1707.07572] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    K. Lee and J.-H. Park, Covariant action for a string in “doubled yet gauged” spacetime, Nucl. Phys. B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].
  32. [32]
    P.K. Townsend, Membrane tension and manifest IIB S duality, Phys. Lett. B 409 (1997) 131 [hep-th/9705160] [INSPIRE].
  33. [33]
    M. Cederwall and P.K. Townsend, The Manifestly SL(2, ℤ) covariant superstring, JHEP 09 (1997) 003 [hep-th/9709002] [INSPIRE].
  34. [34]
    M. Hatsuda and K. Kamimura, SL(5) duality from canonical M2-brane, JHEP 11 (2012) 001 [arXiv:1208.1232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Hatsuda and K. Kamimura, M5 algebra and SO(5, 5) duality, JHEP 06 (2013) 095 [arXiv:1305.2258] [INSPIRE].
  36. [36]
    W.D. Linch, III and W. Siegel, F-theory from Fundamental Five-branes, arXiv:1502.00510 [INSPIRE].
  37. [37]
    W.D. Linch and W. Siegel, F-theory with Worldvolume Sectioning, arXiv:1503.00940 [INSPIRE].
  38. [38]
    W.D. Linch and W. Siegel, Critical Super F-theories, arXiv:1507.01669 [INSPIRE].
  39. [39]
    Y. Sakatani and S. Uehara, Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry, Phys. Rev. Lett. 117 (2016) 191601 [arXiv:1607.04265] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Sakatani and S. Uehara, Exceptional M-brane σ-models and η-symbols, arXiv:1712.10316 [INSPIRE].
  41. [41]
    P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].
  42. [42]
    P. West, E 11 , Brane Dynamics and Duality Symmetries, arXiv:1801.00669 [INSPIRE].
  43. [43]
    V. Bengtsson, M. Cederwall, H. Larsson and B.E.W. Nilsson, U-duality covariant membranes, JHEP 02 (2005) 020 [hep-th/0406223] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes, Phys. Rev. D 88 (2013) 085005 [arXiv:1307.0039] [INSPIRE].
  45. [45]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Y.-N. Wang, Generalized Cartan Calculus in general dimension, JHEP 07 (2015) 114 [arXiv:1504.04780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    E. Musaev and H. Samtleben, Fermions and supersymmetry in E 6(6) exceptional field theory, JHEP 03 (2015) 027 [arXiv:1412.7286] [INSPIRE].
  48. [48]
    A. Baguet, O. Hohm and H. Samtleben, E 6(6) Exceptional Field Theory: Review and Embedding of Type IIB, PoS(CORFU2014)133 [arXiv:1506.01065] [INSPIRE].
  49. [49]
    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, The gauge structure of Exceptional Field Theories and the tensor hierarchy, JHEP 04 (2014) 049 [arXiv:1312.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Sakatani and S. Uehara, η-symbols in exceptional field theory, arXiv:1708.06342 [INSPIRE].
  52. [52]
    L. Freidel, R.G. Leigh and D. Minic, Metastring Theory and Modular Space-time, JHEP 06 (2015) 006 [arXiv:1502.08005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    L. Freidel, F.J. Rudolph and D. Svoboda, Generalised Kinematics for Double Field Theory, JHEP 11 (2017) 175 [arXiv:1706.07089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    D.C. Thompson, Duality Invariance: From M-theory to Double Field Theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    C. Schmidhuber, D-brane actions, Nucl. Phys. B 467 (1996) 146 [hep-th/9601003] [INSPIRE].
  56. [56]
    J.A. de Azcarraga, J.M. Izquierdo and P.K. Townsend, A Kaluza-Klein origin for the superstring tension, Phys. Rev. D 45 (1992) R3321 [INSPIRE].
  57. [57]
    P.K. Townsend, World sheet electromagnetism and the superstring tension, Phys. Lett. B 277 (1992) 285 [INSPIRE].
  58. [58]
    E. Bergshoeff, L.A.J. London and P.K. Townsend, Space-time scale invariance and the superp-brane, Class. Quant. Grav. 9 (1992) 2545 [hep-th/9206026] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    C.D.A. Blair and E.T. Musaev, Five-brane actions in double field theory, JHEP 03 (2018) 111 [arXiv:1712.01739] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual Double Field Theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M. Cederwall, (Brane) Charges for 1/2 BPS in Exceptional Geometry, presented at the workshop Duality and Novel Geometry in M-theory, Asia Pacific Centre for Theoretical Physics, Postech (2016).Google Scholar
  62. [62]
    E. Malek, Membranes in Exceptional Generalised Geometry/EFT, presented at the workshop Generalized Geometry & T-Duality, Simons Centre for Geometry and Physics, SUNY Stony Brook (2016).Google Scholar
  63. [63]
    K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J. C 77 (2017) 685 [arXiv:1707.03713] [INSPIRE].
  64. [64]
    S. Driezen, A. Sevrin and D.C. Thompson, Aspects of the Doubled Worldsheet, JHEP 12 (2016) 082 [arXiv:1609.03315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C.D.A. Blair, E. Malek and A.J. Routh, An O(D, D) invariant Hamiltonian action for the superstring, Class. Quant. Grav. 31 (2014) 205011 [arXiv:1308.4829] [INSPIRE].
  66. [66]
    E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10 (2006) 062 [hep-th/0605114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.The Blackett Laboratory, Imperial College LondonLondonU.K.
  2. 2.Theoretische Natuurkunde, Vrije Universiteit Brussel, and the International Solvay InstitutesBrusselsBelgium

Personalised recommendations