Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals

  • Roman N. Lee
  • Kirill T. Mingulov
Open Access
Regular Article - Theoretical Physics


We formulate a method to find the meromorphic solutions of higher-order recurrence relations in the form of the sum over poles with coefficients defined recursively. Several explicit examples of the application of this technique are given. The main advantage of the described approach is that the analytical properties of the solutions are very clear (the position of poles is explicit, the behavior at infinity can be easily determined). These are exactly the properties that are required for the application of the multiloop calculation method based on dimensional recurrence relations and analyticity (the DRA method).


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].
  5. [5]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-Order Electron Anomalous Magnetic Moment — Contribution of Diagrams without Closed Lepton Loops, Phys. Rev. D 91 (2015) 033006 [Erratum ibid. D 96 (2017) 019901] [arXiv:1412.8284] [INSPIRE].
  6. [6]
    S. Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED, Phys. Lett. B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  8. [8]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    R.N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R.N. Lee and K.T. Mingulov, Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method, Comput. Phys. Commun. 203 (2016) 255 [arXiv:1507.04256] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205-206 (2010) 135 [arXiv:1007.2256] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ϵ, Nucl. Phys. Proc. Suppl. 205-206 (2010) 308 [arXiv:1005.0362] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    R.N. Lee and V.A. Smirnov, Analytic ϵ-expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, On ϵ-expansions of Four-loop Non-planar Massless Propagator Diagrams, Eur. Phys. J. C 71 (2011) 1708 [arXiv:1103.3409] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.N. Lee and I.S. Terekhov, Application of the DRA method to the calculation of the four-loop QED-type tadpoles, JHEP 01 (2011) 068 [arXiv:1010.6117] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    R.N. Lee and V.A. Smirnov, The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions, JHEP 12 (2012) 104 [arXiv:1209.0339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    R. Lee, P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop corrections with two closed fermion loops to fermion self energies and the lepton anomalous magnetic moment, JHEP 03 (2013) 162 [arXiv:1301.6481] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.N. Lee and V.A. Smirnov, Evaluating the last missing ingredient for the three-loop quark static potential by differential equations, JHEP 10 (2016) 089 [arXiv:1608.02605] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Analytic three-loop static potential, Phys. Rev. D 94 (2016) 054029 [arXiv:1608.02603] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    S. Foffa, P. Mastrolia, R. Sturani and C. Sturm, Effective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constant, Phys. Rev. D 95 (2017) 104009 [arXiv:1612.00482] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.N. Lee and K.T. Mingulov, DREAM, a program for arbitrary-precision computation of dimensional recurrence relations solutions and its applications, arXiv:1712.05173 [INSPIRE].
  23. [23]
    D.N. Tulaykov, A procedure for finding asymptotic expansions for solutions of difference equations, Proc. Steklov Inst. Math. 272 (2011) 162.MathSciNetCrossRefGoogle Scholar
  24. [24]
    H.R.P. Ferguson and D.H. Bailey, A Polynomial Time, Numerically Stable Integer Relation Algorithm, RNR Techn. Rept. RNR-91-032, 14 July 1992.Google Scholar
  25. [25]
    D.J. Broadhurst, On the enumeration of irreducible k fold Euler sums and their roles in knot theory and field theory, hep-th/9604128 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia

Personalised recommendations