Advertisement

Topological defects in open string field theory

  • Toshiko Kojita
  • Carlo Maccaferri
  • Toru Masuda
  • Martin Schnabl
Open Access
Regular Article - Theoretical Physics

Abstract

We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

Keywords

Conformal Field Models in String Theory String Field Theory Conformal and W Symmetry Tachyon Condensation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 03 (2000) 002 [hep-th/9912249] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Berkovits, A. Sen and B. Zwiebach, Tachyon condensation in superstring field theory, Nucl. Phys. B 587 (2000) 147 [hep-th/0002211] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Moeller, A. Sen and B. Zwiebach, D-branes as tachyon lumps in string field theory, JHEP 08 (2000) 039 [hep-th/0005036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Sen and B. Zwiebach, Large marginal deformations in string field theory, JHEP 10 (2000) 009 [hep-th/0007153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Y. Michishita, Tachyon lump solutions of bosonic D-branes on SU(2) group manifolds in cubic string field theory, Nucl. Phys. B 614 (2001) 26 [hep-th/0105246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Bagchi and A. Sen, Tachyon Condensation on Separated Brane-Antibrane System, JHEP 05 (2008) 010 [arXiv:0801.3498] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J.L. Karczmarek and M. Longton, SFT on separated D-branes and D-brane translation, JHEP 08 (2012) 057 [arXiv:1203.3805] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Kudrna, T. Masuda, Y. Okawa, M. Schnabl and K. Yoshida, Gauge-invariant observables and marginal deformations in open string field theory, JHEP 01 (2013) 103 [arXiv:1207.3335] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Kudrna, C. Maccaferri and M. Schnabl, Boundary State from Ellwood Invariants, JHEP 07 (2013) 033 [arXiv:1207.4785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Kudrna, M. Rapcak and M. Schnabl, Ising model conformal boundary conditions from open string field theory, arXiv:1401.7980 [INSPIRE].
  12. [12]
    M. Kudrna and C. Maccaferri, BCFT moduli space in level truncation, JHEP 04 (2016) 057 [arXiv:1601.04046] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    T. Kawano, I. Kishimoto and T. Takahashi, Gauge Invariant Overlaps for Classical Solutions in Open String Field Theory, Nucl. Phys. B 803 (2008) 135 [arXiv:0804.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    I. Ellwood, The closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].
  22. [22]
    M. Murata and M. Schnabl, On Multibrane Solutions in Open String Field Theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Baba and N. Ishibashi, Energy from the gauge invariant observables, JHEP 04 (2013) 050 [arXiv:1208.6206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: A General framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    L. Bonora, C. Maccaferri and D.D. Tolla, Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    H. Hata and T. Kojita, Winding Number in String Field Theory, JHEP 01 (2012) 088 [arXiv:1111.2389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H. Hata and T. Kojita, Singularities in K-space and Multi-brane Solutions in Cubic String Field Theory, JHEP 02 (2013) 065 [arXiv:1209.4406] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Erler, Analytic solution for tachyon condensation in Berkovits‘ open superstring field theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Takahashi and S. Tanimoto, Marginal and scalar solutions in cubic open string field theory, JHEP 03 (2002) 033 [hep-th/0202133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    C. Maccaferri, A simple solution for marginal deformations in open string field theory, JHEP 05 (2014) 004 [arXiv:1402.3546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    T. Erler and C. Maccaferri, String Field Theory Solution for Any Open String Background, JHEP 10 (2014) 029 [arXiv:1406.3021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    C. Maccaferri and M. Schnabl, Large BCFT moduli in open string field theory, JHEP 08 (2015) 149 [arXiv:1506.03723] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  40. [40]
    I. Kishimoto, T. Masuda, T. Takahashi and S. Takemoto, Open String Fields as Matrices, PTEP 2015 (2015) 033B05 [arXiv:1412.4855] [INSPIRE].
  41. [41]
    N. Ishibashi, I. Kishimoto and T. Takahashi, String field theory solution corresponding to constant background magnetic field, PTEP 2017 (2017) 013B06 [arXiv:1610.05911] [INSPIRE].
  42. [42]
    C.B. Thorn, String field theory, Phys. Rept. 175 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, in Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, pp. 641–759 (2003) [DOI: https://doi.org/10.1142/9789812702821_0012] [hep-th/0311017] [INSPIRE].
  44. [44]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    E. Fuchs and M. Kroyter, Analytical Solutions of Open String Field Theory, Phys. Rept. 502 (2011) 89 [arXiv:0807.4722] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M. Schnabl, Algebraic solutions in Open String Field Theory — A Lightning Review, arXiv:1004.4858 [INSPIRE].
  47. [47]
    Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1001 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].
  49. [49]
    V.B. Petkova and J.-B. Zuber, Conformal boundary conditions and what they teach us, in Nonperturbative QFT methods and their applications. Proceedings, 24th Johns Hopkins Workshop on Current Problems in Particle Theory, Budapest, Hungary, August 19–21, 2000, pp. 1–35 [DOI: https://doi.org/10.1142/9789812799968_0001] [hep-th/0103007] [INSPIRE].
  50. [50]
    I. Runkel, Boundary problems in conformal field theory, Ph.D. Thesis (2000) [https://www.math.uni-hamburg.de/home/runkel/PDF/phd.pdf].
  51. [51]
    M. Gaberdiel, Boundary conformal field theory and D-branes, lectures given at the TMR network school on Nonperturbative methods in low dimensional integrable models, Budapest, 15–21 July 2003 [http://www.phys.ethz.ch/~mrg/lectures2.pdf].
  52. [52]
    A. Recknagel, V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes, Cambridge University Press (2013).Google Scholar
  53. [53]
    M. Schnabl, String field theory at large B field and noncommutative geometry, JHEP 11 (2000) 031 [hep-th/0010034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with Singular Gauge Transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [INSPIRE].
  57. [57]
    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354 [hep-th/0607247] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    V.B. Petkova and J.B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and holography, JHEP 06 (2002) 027 [hep-th/0111210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    K. Graham and G.M.T. Watts, Defect lines and boundary flows, JHEP 04 (2004) 019 [hep-th/0306167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    J. Fuchs, M.R. Gaberdiel, I. Runkel and C. Schweigert, Topological defects for the free boson CFT, J. Phys. A 40 (2007) 11403 [arXiv:0705.3129] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    E. Wong and I. Affleck, Tunneling in quantum wires: A Boundary conformal field theory approach, Nucl. Phys. B 417 (1994) 403 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys. B 495 (1997) 533 [cond-mat/9612187] [INSPIRE].
  65. [65]
    C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    T. Quella, I. Runkel and G.M.T. Watts, Reflection and transmission for conformal defects, JHEP 04 (2007) 095 [hep-th/0611296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    C. Bachas and I. Brunner, Fusion of conformal interfaces, JHEP 02 (2008) 085 [arXiv:0712.0076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    Z. Bajnok, L. Holló and G. Watts, Defect scaling Lee-Yang model from the perturbed DCFT point of view, Nucl. Phys. B 886 (2014) 93 [arXiv:1307.4536] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    T. Kimura and M. Murata, Transport Process in Multi-Junctions of Quantum Systems, JHEP 07 (2015) 072 [arXiv:1505.05275] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    I. Brunner and C. Schmidt-Colinet, Reflection and transmission of conformal perturbation defects, J. Phys. A 49 (2016) 195401 [arXiv:1508.04350] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  71. [71]
    E.P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    I. Runkel, Perturbed Defects and T-Systems in Conformal Field Theory, J. Phys. A 41 (2008) 105401 [arXiv:0711.0102] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  73. [73]
    A.N. Kirillov and N.Y. Reshetikhin, Representations of the algebra U q(sl(2)), q-orthogonal polynomials and invariants of links, in Infinite Dimensional Lie Algebras And Groups, V.G. Kac ed., Adv. Ser. Math. Phys. 7 (1989) 285.Google Scholar
  74. [74]
    L. Álvarez-Gaumé, C. Gomez and G. Sierra, Quantum Group Interpretation of Some Conformal Field Theories, Phys. Lett. B 220 (1989) 142 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    G.W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    G. Moore and N. Seiberg, Lectures on RCFT, in Physics, geometry, and topology, Banff, AB (1989), H.C. Lee ed., NATO Adv. Sci. Inst. Ser. B 238 (1990) 263 [INSPIRE].
  77. [77]
    J.S. Carter, D.E. Flath and M. Saito, The classical and quantum 6j symbols, Princeton University Press (1995).Google Scholar
  78. [78]
    R. Coquereaux, Racah-Wigner quantum 6j symbols, Ocneanu cells for A(N) diagrams and quantum groupoids, J. Geom. Phys. 57 (2007) 387 [hep-th/0511293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372 (1992) 654 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    G. Pradisi, A. Sagnotti and Ya.S. Stanev, Completeness conditions for boundary operators in 2−D conformal field theory, Phys. Lett. B 381(1996) 97[hep-th/9603097] [INSPIRE].
  81. [81]
    N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    P. di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag (1996).Google Scholar
  84. [84]
    I. Runkel, Boundary structure constants for the A series Virasoro minimal models, Nucl. Phys. B 549 (1999) 563 [hep-th/9811178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 570 (2000) 525 [hep-th/9908036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, The Geometry of WZW branes, J. Geom. Phys. 34 (2000) 162 [hep-th/9909030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, Correlation functions and boundary conditions in RCFT and three-dimensional topology, Compos. Math. 131 (2002) 189 [hep-th/9912239] [INSPIRE].CrossRefzbMATHGoogle Scholar
  88. [88]
    H. Yang and B. Zwiebach, A Closed string tachyon vacuum?, JHEP 09 (2005) 054 [hep-th/0506077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Toshiko Kojita
    • 1
    • 2
    • 3
  • Carlo Maccaferri
    • 4
  • Toru Masuda
    • 1
    • 3
    • 5
  • Martin Schnabl
    • 1
  1. 1.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic
  2. 2.Maskawa Institute for Science and CultureKyoto Sangyo UniversityKyoto-CityJapan
  3. 3.CORE of STEMNara Women’s UniversityNara-CityJapan
  4. 4.Dipartimento di Fisica, Università di Torino and INFN Sezione di TorinoTorinoItaly
  5. 5.Department of PhysicsNara Women’s UniversityNara-CityJapan

Personalised recommendations