Advertisement

Off-shell renormalization in Higgs effective field theories

  • Daniele Binosi
  • Andrea Quadri
Open Access
Regular Article - Theoretical Physics
  • 50 Downloads

Abstract

The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential \( \sim {\left({\Phi}^{\dagger}\Phi -\frac{\upupsilon^2}{2}\right)}^N \) with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.

Keywords

Beyond Standard Model BRST Quantization Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Piguet and S.P. Sorella, Algebraic renormalization: perturbative renormalization, symmetries and anomalies, Lect. Notes Phys. Monogr. 28 (1995) 1 [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    R. Ferrari, P.A. Grassi and A. Quadri, Direct algebraic restoration of Slavnov-Taylor identities in the Abelian Higgs-Kibble model, Phys. Lett. B 472 (2000) 346 [hep-th/9905192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Quadri, Slavnov-Taylor parameterization for the quantum restoration of BRST symmetries in anomaly free gauge theories, JHEP 04 (2003) 017 [hep-th/0301211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Quadri, Higher order nonsymmetric counterterms in pure Yang-Mills theory, J. Phys. G 30 (2004) 677 [hep-th/0309133] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Quadri, Slavnov-Taylor parameterization of Yang-Mills theory with massive fermions in the presence of singlet axial-vector currents, JHEP 06 (2005) 068 [hep-th/0504076] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P.A. Grassi, T. Hurth and M. Steinhauser, Practical algebraic renormalization, Annals Phys. 288 (2001) 197 [hep-ph/9907426] [INSPIRE].
  7. [7]
    P.A. Grassi, T. Hurth and M. Steinhauser, The algebraic method, Nucl. Phys. B 610 (2001) 215 [hep-ph/0102005] [INSPIRE].
  8. [8]
    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  9. [9]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    X.-M. Zhang, Operators analysis for Higgs potential and cosmological bound on Higgs mass, Phys. Rev. D 47 (1993) 3065 [hep-ph/9301277] [INSPIRE].
  11. [11]
    X. Zhang, B.L. Young and S.K. Lee, Electroweak sphaleron for effective theory in the limit of large Higgs boson mass, Phys. Rev. D 51 (1995) 5327 [hep-ph/9406322] [INSPIRE].
  12. [12]
    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the Standard Model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
  13. [13]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Degrassi, M. Fedele and P.P. Giardino, Constraints on the trilinear Higgs self coupling from precision observables, JHEP 04 (2017) 155 [arXiv:1702.01737] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G.D. Kribs, A. Maier, H. Rzehak, M. Spannowsky and P. Waite, Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction, Phys. Rev. D 95 (2017) 093004 [arXiv:1702.07678] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Deutschmann, C. Duhr, F. Maltoni and E. Vryonidou, Gluon-fusion Higgs production in the Standard Model effective field theory, JHEP 12 (2017) 063 [Erratum ibid. 02 (2018) 159] [arXiv:1708.00460] [INSPIRE].
  17. [17]
    G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Elias-Miro, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    C.J.C. Burges and H.J. Schnitzer, Virtual effects of excited quarks as probes of a possible new hadronic mass scale, Nucl. Phys. B 228 (1983) 464 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].ADSGoogle Scholar
  25. [25]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Probing anomalous top quark couplings induced by dimension-six operators at photon colliders, Nucl. Phys. B 689 (2004) 108 [hep-ph/0310159] [INSPIRE].
  27. [27]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings, Nucl. Phys. B 821 (2009) 215 [arXiv:0904.2387] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
  31. [31]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Gomis and S. Weinberg, Are nonrenormalizable gauge theories renormalizable?, Nucl. Phys. B 469 (1996) 473 [hep-th/9510087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Quadri, Higgs potential from derivative interactions, Int. J. Mod. Phys. A 32 (2017) 1750089 [arXiv:1610.00150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Quadri, The Abelian embedding formulation of the Stueckelberg model and its power-counting renormalizable extension, Phys. Rev. D 73 (2006) 065024 [hep-th/0601169] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolàs and G. Servant, Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP 12 (2016) 101 [arXiv:1607.01786] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble model, Commun. Math. Phys. 42 (1975) 127 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    C. Becchi, A. Rouet and R. Stora, Renormalization of gauge theories, Annals Phys. 98 (1976) 287 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space, Commun. Math. Phys. 15 (1969) 208 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    W. Zimmermann, Composite operators in the perturbation theory of renormalizable interactions, Annals Phys. 77 (1973) 536 [Lect. Notes Phys. 558 (2000) 244] [INSPIRE].
  43. [43]
    P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rept. 338 (2000) 439 [hep-th/0002245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    P. Gambino and P.A. Grassi, The Nielsen identities of the SM and the definition of mass, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254] [INSPIRE].
  46. [46]
    P. Gambino, P.A. Grassi and F. Madricardo, Fermion mixing renormalization and gauge invariance, Phys. Lett. B 454 (1999) 98 [hep-ph/9811470] [INSPIRE].
  47. [47]
    P.A. Grassi, T. Hurth and M. Steinhauser, Noninvariant two loop counterterms for the three gauge boson vertices, JHEP 11 (2000) 037 [hep-ph/0011067] [INSPIRE].
  48. [48]
    P.A. Grassi, T. Hurth and A. Quadri, On the Landau background gauge fixing and the IR properties of YM Green functions, Phys. Rev. D 70 (2004) 105014 [hep-th/0405104] [INSPIRE].ADSGoogle Scholar
  49. [49]
    C.P. Martin and D. Sánchez-Ruiz, Action principles, restoration of BRS symmetry and the renormalization group equation for chiral non-Abelian gauge theories in dimensional renormalization with a nonanticommuting γ 5, Nucl. Phys. B 572 (2000) 387 [hep-th/9905076] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    E. Kraus, Renormalization of the electroweak Standard Model to all orders, Annals Phys. 262 (1998) 155 [hep-th/9709154] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    P.A. Grassi, Renormalization of nonsemisimple gauge models with the background field method, Nucl. Phys. B 560 (1999) 499 [hep-th/9908188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    W. Hollik, E. Kraus, M. Roth, C. Rupp, K. Sibold and D. Stöckinger, Renormalization of the minimal supersymmetric Standard Model, Nucl. Phys. B 639 (2002) 3 [hep-ph/0204350] [INSPIRE].
  53. [53]
    R. Ferrari and A. Quadri, A weak power-counting theorem for the renormalization of the non-linear σ-model in four dimensions, Int. J. Theor. Phys. 45 (2006) 2497 [hep-th/0506220] [INSPIRE].CrossRefzbMATHGoogle Scholar
  54. [54]
    R. Ferrari and A. Quadri, Renormalization of the non-linear σ-model in four dimensions: a two-loop example, JHEP 01 (2006) 003 [hep-th/0511032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    D. Bettinelli, R. Ferrari and A. Quadri, Path-integral over non-linearly realized groups and hierarchy solutions, JHEP 03 (2007) 065 [hep-th/0701212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    D. Bettinelli, R. Ferrari and A. Quadri, A massive Yang-Mills theory based on the nonlinearly realized gauge group, Phys. Rev. D 77 (2008) 045021 [arXiv:0705.2339] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    D. Bettinelli, R. Ferrari and A. Quadri, One-loop self-energy and counterterms in a massive Yang-Mills theory based on the nonlinearly realized gauge group, Phys. Rev. D 77 (2008) 105012 [Erratum ibid. D 85 (2012) 129901] [arXiv:0709.0644] [INSPIRE].
  58. [58]
    D. Bettinelli, R. Ferrari and A. Quadri, The SU(2) × U(1) electroweak model based on the nonlinearly realized gauge group, Int. J. Mod. Phys. A 24 (2009) 2639 [Erratum ibid. A 27 (2012) 1292004] [arXiv:0807.3882] [INSPIRE].
  59. [59]
    D. Bettinelli, R. Ferrari and A. Quadri, The SU(2) × U(1) electroweak model based on the nonlinearly realized gauge group. II. Functional equations and the weak power-counting, Acta Phys. Polon. B 41 (2010) 597 [Erratum ibid. B 43 (2012) 483] [arXiv:0809.1994] [INSPIRE].
  60. [60]
    D. Bettinelli, R. Ferrari and A. Quadri, One-loop self-energies in the electroweak model with nonlinearly realized gauge group, Phys. Rev. D 79 (2009) 125028 [Erratum ibid. D 85 (2012) 049903] [arXiv:0903.0281] [INSPIRE].
  61. [61]
    M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories, JHEP 07 (2013) 132 [arXiv:1305.1548] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa TambosiVillazzano (TN)Italy
  2. 2.Dip. di Fisica, Università degli Studi di Milano and INFN, Sezione di MilanoMilanoItaly

Personalised recommendations