Large Higgs-electron Yukawa coupling in 2HDM

Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

The present upper bound on κ e , the ratio between the electron Yukawa coupling and its Standard Model value, is of \( \mathcal{O}(600) \). We ask what would be the implications in case that κ e is close to this upper bound. The simplest extension that allows for such enhancement is that of two Higgs doublet models (2HDM) without natural flavor conservation. In this framework, we find the following consequences: (i) Under certain conditions, measuring κ e and κ V would be enough to predict values of Yukawa couplings for other fermions and for the H and A scalars. (ii) In the case that the scalar potential has a softly broken Z2 symmetry, the second Higgs doublet must be light, but if there is hard breaking of the symmetry, the second Higgs doublet can be much heavier than the electroweak scale and still allow the electron Yukawa coupling to be very different from its SM value. (iii) CP must not be violated at a level higher than \( \mathcal{O}\left(0.01/{\kappa}_e\right) \) in both the scalar potential and the Yukawa sector. (iv) LHC searches for e+e resonances constrain this scenario in a significant way. Finally, we study the implications for models where one of the scalar doublets couples only to the first generation, or only to the third generation.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Evidence for the \( H\to b\overline{b} \) decay with the ATLAS detector, JHEP 12 (2017) 024 [arXiv:1708.03299] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].
  3. [3]
    ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].
  4. [4]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment, arXiv:1802.04329 [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for the dimuon decay of the Higgs boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 119 (2017) 051802 [arXiv:1705.04582] [INSPIRE].
  7. [7]
    F.J. Botella, G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, What if the masses of the first two quark families are not generated by the standard model Higgs boson?, Phys. Rev. D 94 (2016) 115031 [arXiv:1602.08011] [INSPIRE].
  8. [8]
    D. Ghosh, R.S. Gupta and G. Perez, Is the Higgs Mechanism of Fermion Mass Generation a Fact? A Yukawa-less First-Two-Generation Model, Phys. Lett. B 755 (2016) 504 [arXiv:1508.01501] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. Altmannshofer, S. Gori, A.L. Kagan, L. Silvestrini and J. Zupan, Uncovering Mass Generation Through Higgs Flavor Violation, Phys. Rev. D 93 (2016) 031301 [arXiv:1507.07927] [INSPIRE].
  10. [10]
    CMS collaboration, Search for a standard model-like Higgs boson in the μ + μ and e + e decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].
  11. [11]
    ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  12. [12]
    S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  13. [13]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W. Altmannshofer, J. Brod and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, JHEP 05 (2015) 125 [arXiv:1503.04830] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Dery, A. Efrati, G. Hiller, Y. Hochberg and Y. Nir, Higgs couplings to fermions: 2HDM with MFV, JHEP 08 (2013) 006 [arXiv:1304.6727] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  18. [18]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].
  19. [19]
    V.D. Barger, A.K. Das and C. Kao, The Electric dipole moment of the muon in a two-Higgs doublet model, Phys. Rev. D 55 (1997) 7099 [hep-ph/9611344] [INSPIRE].
  20. [20]
    S. Weinberg, Unitarity Constraints on CP Nonconservation in Higgs Exchange, Phys. Rev. D 42 (1990) 860 [INSPIRE].
  21. [21]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].
  22. [22]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    CMS collaboration, Search for Evidence of the Type-III Seesaw Mechanism in Multilepton Final States in Proton-Proton Collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 221802 [arXiv:1708.07962] [INSPIRE].
  25. [25]
    T. Abe, R. Sato and K. Yagyu, Muon specific two-Higgs-doublet model, JHEP 07 (2017) 012 [arXiv:1705.01469] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  27. [27]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  28. [28]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=13 \) TeV and combination with 8 TeV data, Phys. Lett. B 768 (2017) 57 [arXiv:1609.05391] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  30. [30]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
  31. [31]
    N.P. Hartland and E.R. Nocera, A Mathematica interface to NNPDFs, arXiv:1209.2585 [INSPIRE].
  32. [32]
    D. d’Enterria, Higgs physics at the Future Circular Collider, PoS(ICHEP2016)434 [arXiv:1701.02663] [INSPIRE].
  33. [33]
    A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for exclusive Higgs and Z boson decays to \( \phi \) γ and ργ with the ATLAS detector, arXiv:1712.02758 [INSPIRE].
  35. [35]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Cohen, S. Bar-Shalom, G. Eilam and A. Soni, Light-quarks Yukawa couplings and new physics in exclusive high-p T Higgs boson + jet and Higgs boson + b-jet events, Phys. Rev. D 97 (2018) 055014 [arXiv:1705.09295] [INSPIRE].
  37. [37]
    J. Gao, Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders, JHEP 01 (2018) 038 [arXiv:1608.01746] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Yu, Phenomenology of Enhanced Light Quark Yukawa Couplings and the W ± h Charge Asymmetry, JHEP 02 (2017) 083 [arXiv:1609.06592] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L.M. Carpenter, T. Han, K. Hendricks, Z. Qian and N. Zhou, Higgs Boson Decay to Light Jets at the LHC, Phys. Rev. D 95 (2017) 053003 [arXiv:1611.05463] [INSPIRE].
  40. [40]
    F. Bishara, J. Brod, P. Uttayarat and J. Zupan, Nonstandard Yukawa Couplings and Higgs Portal Dark Matter, JHEP 01 (2016) 010 [arXiv:1504.04022] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    W. Altmannshofer, J. Eby, S. Gori, M. Lotito, M. Martone and D. Tuckler, Collider Signatures of Flavorful Higgs Bosons, Phys. Rev. D 94 (2016) 115032 [arXiv:1610.02398] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations