On interference and non-interference in the SMEFT

Open Access
Regular Article - Theoretical Physics
  • 4 Downloads

Abstract

We discuss interference in the limit \( {\widehat{m}}_W^2/s\to 0 \) in the Standard Model Effective Field Theory (SMEFT). Dimension six operators that contribute to \( \overline{\psi}\psi \to \overline{\psi}{\prime}_1\psi {\prime}_2\overline{\psi}{\prime}_3\psi {\prime}_4 \) scattering events can experience a suppression of interference effects with the Standard Model in this limit. This occurs for subsets of phase space in some helicity configurations. We show that approximating these scattering events by 2 → 2 on-shell scattering results for intermediate unstable gauge bosons, and using the narrow width approximation, can miss interference terms present in the full phase space. Such interference terms can be uncovered using off-shell calculations as we explicitly show and calculate. We also study the commutation relation between the SMEFT expansion and the narrow width approximation, and discuss some phenomenological implications of these results.

Keywords

Beyond Standard Model Effective Field Theories Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, arXiv:1706.08945 [INSPIRE].
  2. [2]
    L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    I. Brivio and M. Trott, Scheming in the SMEFT… and a reparameterization invariance!, JHEP 07 (2017) 148 [arXiv:1701.06424] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Y.-S. Tsai and A.C. Hearn, Differential Cross Section for \( {e}^{+}+{e}^{-}\to {W}^{+}+{W}^{-}\to {e}^{-}+{\overline{\nu}}_e+{\mu}^{+}+{\nu}_{\mu } \), Phys. Rev. 140 (1965) B721 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V.V. Flambaum, I.B. Khriplovich and O.P. Sushkov, Tests of Renormalizable Models of Weak Interactions in e + e Collisions, Sov. J. Nucl. Phys. 20 (1975) 537 [Yad. Fiz. 20 (1974) 1016] [INSPIRE].
  8. [8]
    W. Alles, C. Boyer and A.J. Buras, W Boson Production in e + e Collisions in the Weinberg-Salam Model, Nucl. Phys. B 119 (1977) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Bletzacker and H.T. Nieh, Production and Decay of W Boson in electron-Positron Annihilation, Nucl. Phys. B 124 (1977) 511 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K.J.F. Gaemers and G.J. Gounaris, Polarization Amplitudes for e + e W + W and e + e ZZ, Z. Phys. C 1 (1979) 259 [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.L. Bilchak and J.D. Stroughair, W + W Pair Production in e + e Colliders, Phys. Rev. D 30 (1984) 1881 [INSPIRE].ADSGoogle Scholar
  12. [12]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    W. Beenakker and A. Denner, Standard model predictions for W pair production in electron-positron collisions, Int. J. Mod. Phys. A 9 (1994) 4837 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
  15. [15]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Butter, O.J.P. Éboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027 [arXiv:1707.08060] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].
  28. [28]
    C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W + W production at the LHC including fermionic operators, Phys. Rev. D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E.H. Simmons, Dimension-six Gluon Operators as Probes of New Physics, Phys. Lett. B 226 (1989) 132 [INSPIRE].
  32. [32]
    L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys. B 423 (1994) 3 [Erratum ibid. B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].
  33. [33]
    F.A. Berends, R. Pittau and R. Kleiss, All electroweak four fermion processes in electron-positron collisions, Nucl. Phys. B 424 (1994) 308 [hep-ph/9404313] [INSPIRE].
  34. [34]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  35. [35]
    E.N. Argyres et al., Stable calculations for unstable particles: Restoring gauge invariance, Phys. Lett. B 358 (1995) 339 [hep-ph/9507216] [INSPIRE].
  36. [36]
    W. Beenakker et al., W W cross-sections and distributions, in proceedings of the CERN Workshop on LEP2 Physics (followed by 2nd meeting, 15–16 Jun. 1995 and 3rd meeting 2–3 Nov. 1995), Geneva, Switzerland, 2–3 February 1995, pp. 79–139 [hep-ph/9602351] [INSPIRE].
  37. [37]
    W. Beenakker et al., The Fermion loop scheme for finite width effects in e + e annihilation into four fermions, Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260] [INSPIRE].
  38. [38]
    M.W. Grunewald et al., Reports of the Working Groups on Precision Calculations for LEP2 Physics: Proceedings. Four fermion production in electron positron collisions, hep-ph/0005309 [INSPIRE].
  39. [39]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C. Moeller, K. Dansk. Vidensk. Selsk. Skr. B 19 (1946).Google Scholar
  41. [41]
    R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z 0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.G.J. Veltman, Mass and width of unstable gauge bosons, Z. Phys. C 62 (1994) 35 [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Niels Bohr International Academy and Discovery Centre, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations