Fayet-Iliopoulos terms in supergravity without gauged R-symmetry

  • Niccolò Cribiori
  • Fotis Farakos
  • Magnus Tournoy
  • Antoine Van Proeyen
Open Access
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract

We construct a supergravity-Maxwell theory with a novel embedding of the Fayet-Iliopoulos D-term, leading to spontaneous supersymmetry breaking. The gauging of the R-symmetry is not required and a gravitino mass is allowed for a generic vacuum. When matter couplings are introduced, an uplift through a positive definite contribution to the scalar potential is obtained. We observe a notable similarity to the \( \overline{D}3 \) uplift constructions and we give a natural description in terms of constrained multiplets.

Keywords

Supergravity Models Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P. Fayet and J. Iliopoulos, Spontaneously Broken Supergauge Symmetries and Goldstone Spinors, Phys. Lett. B 51 (1974) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.Z. Freedman, Supergravity with Axial Gauge Invariance, Phys. Rev. D 15 (1977) 1173 [INSPIRE].ADSGoogle Scholar
  4. [4]
    R. Barbieri, S. Ferrara, D.V. Nanopoulos and K.S. Stelle, Supergravity, R Invariance and Spontaneous Supersymmetry Breaking, Phys. Lett. B 113 (1982) 219 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Binétruy and G.R. Dvali, D term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [INSPIRE].
  6. [6]
    G. Dvali, R. Kallosh and A. Van Proeyen, D term strings, JHEP 01 (2004) 035 [hep-th/0312005] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. Binétruy, G. Dvali, R. Kallosh and A. Van Proeyen, Fayet-Iliopoulos terms in supergravity and cosmology, Class. Quant. Grav. 21 (2004) 3137 [hep-th/0402046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    G. Dall’Agata and F. Zwirner, New Class of N = 1 No-Scale Supergravity Models, Phys. Rev. Lett. 111 (2013) 251601 [arXiv:1308.5685] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Aldabergenov and S.V. Ketov, Removing instability of inflation in Polonyi-Starobinsky supergravity by adding FI term, Mod. Phys. Lett. A 91 (2018) 1850032 [arXiv:1711.06789] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld Lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    F. Farakos, S. Ferrara, A. Kehagias and M. Porrati, Supersymmetry Breaking by Higher Dimension Operators, Nucl. Phys. B 879 (2014) 348 [arXiv:1309.1476] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    T. Fujimori, M. Nitta, K. Ohashi, Y. Yamada and R. Yokokura, Ghost-free vector superfield actions in supersymmetric higher-derivative theories, JHEP 09 (2017) 143 [arXiv:1708.05129] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press (2012).Google Scholar
  15. [15]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Villadoro and F. Zwirner, De-Sitter vacua via consistent D-terms, Phys. Rev. Lett. 95 (2005) 231602 [hep-th/0508167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    T. Kugo and S. Uehara, N = 1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear Versus Non-linear Supersymmetry, in General, JHEP 04 (2016) 065 [arXiv:1603.02653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press (1992).Google Scholar
  22. [22]
    A. Van Proeyen, Massive Vector Multiplets in Supergravity, Nucl. Phys. B 162 (1980) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. de Wit and M. Roček, Improved tensor multiplets, Phys. Lett. B 109 (1982) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci and D. Sorokin, The Goldstino brane, the constrained superfields and matter in \( \mathcal{N}=1 \) supergravity, JHEP 11 (2016) 109 [arXiv:1608.05908] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G. Dall’Agata, E. Dudas and F. Farakos, On the origin of constrained superfields, JHEP 05 (2016) 041 [arXiv:1603.03416] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Cribiori, G. Dall’Agata and F. Farakos, From Linear to Non-linear SUSY and Back Again, JHEP 08 (2017) 117 [arXiv:1704.07387] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    K. Benakli, Y. Chen and M.D. Goodsell, Minimal constrained superfields and the Fayet-Iliopoulos model, arXiv:1711.08466 [INSPIRE].
  33. [33]
    E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1, Phys. Lett. B 190 (1987) 86 [INSPIRE].
  36. [36]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of Nilpotent Supergravity, JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
  40. [40]
    F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional \( \mathcal{N}=1 \) supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S.M. Kuzenko, Complex linear Goldstino superfield and supergravity, JHEP 10 (2015) 006 [arXiv:1508.03190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Samuel and J. Wess, A Superfield Formulation of the Nonlinear Realization of Supersymmetry and Its Coupling to Supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    S.M. Kuzenko, I.N. McArthur and G. Tartaglino-Mazzucchelli, Goldstino superfields in \( \mathcal{N}=2 \) supergravity, JHEP 05 (2017) 061 [arXiv:1702.02423] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    A.A. Tseytlin, Selfduality of Born-Infeld action and Dirichlet three-brane of type IIB superstring theory, Nucl. Phys. B 469 (1996) 51 [hep-th/9602064] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Niccolò Cribiori
    • 1
    • 2
    • 3
  • Fotis Farakos
    • 3
  • Magnus Tournoy
    • 3
    • 4
  • Antoine Van Proeyen
    • 3
  1. 1.Dipartimento di Fisica e Astronomia “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.INFN, Sezione di PadovaPadovaItaly
  3. 3.KU Leuven, Institute for Theoretical PhysicsLeuvenBelgium
  4. 4.Institute for Theoretical Physics Amsterdam, Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations