Electric dipole moments in the minimal scotogenic model

Open Access
Regular Article - Theoretical Physics


In this work we consider a minimal version of the scotogenic model capable of accounting for an electron electric dipole moment within experimental sensitivity reach in addition to providing a dark matter candidate and radiatively generating neutrino masses. The Standard Model is minimally extended by two sterile fermions and one inert scalar doublet, both having odd parity, while the Standard Model particles have an even parity, imposed by a ℤ2 symmetry. The neutrino Yukawa couplings provide additional sources of CP violation, and thus a possible impact on electric dipole moments of charged leptons. This model provides two possible dark matter candidates (one bosonic and one fermionic) and our results show that, independently of the ordering of the generated light neutrino spectrum, one can have sizeable electron electric dipole moment within ACME sensitivity reach in the case of fermionic dark matter candidate.


Beyond Standard Model CP violation Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  4. [4]
    S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].Google Scholar
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].
  8. [8]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].
  9. [9]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
  10. [10]
    S.M. Barr, A Different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].
  11. [11]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  12. [12]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  13. [13]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
  14. [14]
    A. Ali, A.V. Borisov and N.B. Zamorin, Majorana neutrinos and same sign dilepton production at LHC and in rare meson decays, Eur. Phys. J. C 21 (2001) 123 [hep-ph/0104123] [INSPIRE].
  15. [15]
    A. Atre, V. Barger and T. Han, Upper bounds on lepton-number violating processes, Phys. Rev. D 71 (2005) 113014 [hep-ph/0502163] [INSPIRE].
  16. [16]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Chrzaszcz, Searches for LFV and LNV Decays at LHCb, in 7th International Workshop on the CKM Unitarity Triangle (CKM 2012), Cincinnati, Ohio, U.S.A., September 28-October 2, 2012 [arXiv:1301.2088] [INSPIRE].
  18. [18]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].
  19. [19]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton-Number Violation: Seesaw Models and Their Collider Tests, arXiv:1711.02180 [INSPIRE].
  20. [20]
    A. Abada, V. De Romeri, M. Lucente, A.M. Teixeira and T. Toma, Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, JHEP 02 (2018) 169 [arXiv:1712.03984] [INSPIRE].
  21. [21]
    A. de Gouvêa and S. Gopalakrishna, Low-energy neutrino Majorana phases and charged-lepton electric dipole moments, Phys. Rev. D 72 (2005) 093008 [hep-ph/0508148] [INSPIRE].
  22. [22]
    D. Ng and J.N. Ng, A Note on Majorana neutrinos, leptonic CKM and electron electric dipole moment, Mod. Phys. Lett. A 11 (1996) 211 [hep-ph/9510306] [INSPIRE].
  23. [23]
    J.P. Archambault, A. Czarnecki and M. Pospelov, Electric dipole moments of leptons in the presence of Majorana neutrinos, Phys. Rev. D 70 (2004) 073006 [hep-ph/0406089] [INSPIRE].
  24. [24]
    W.-F. Chang and J.N. Ng, Charged lepton electric dipole moments from TeV scale right-handed neutrinos, New J. Phys. 7 (2005) 65 [hep-ph/0411201] [INSPIRE].
  25. [25]
    A. Abada and T. Toma, Electric Dipole Moments of Charged Leptons with Sterile Fermions, JHEP 02 (2016) 174 [arXiv:1511.03265] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  27. [27]
    W.C. Griffith, Measurements and implications of EDMs, plenary talk at Interplay between Particle & Astroparticle physics 2014, Queen Mary University of London, 18-22 August 2014 [https://indico.ph.qmul.ac.uk/indico/conferenceDisplay.py?confId=1].
  28. [28]
    A. Abada and M. Lucente, Looking for the minimal inverse seesaw realisation, Nucl. Phys. B 885 (2014) 651 [arXiv:1401.1507] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    A. Abada and T. Toma, Electron electric dipole moment in Inverse Seesaw models, JHEP 08 (2016) 079 [arXiv:1605.07643] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  31. [31]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  32. [32]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  33. [33]
    J. Kubo, E. Ma and D. Suematsu, Cold Dark Matter, Radiative Neutrino Mass, μeγ and Neutrinoless Double Beta Decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
  34. [34]
    D. Suematsu, T. Toma and T. Yoshida, Reconciliation of CDM abundance and μeγ in a radiative seesaw model, Phys. Rev. D 79 (2009) 093004 [arXiv:0903.0287] [INSPIRE].
  35. [35]
    D. Schmidt, T. Schwetz and T. Toma, Direct Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino Masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].
  36. [36]
    T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP 01 (2014) 160 [arXiv:1312.2840] [INSPIRE].
  37. [37]
    H. Davoudiasl and I.M. Lewis, Right-Handed Neutrinos as the Origin of the Electroweak Scale, Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].
  38. [38]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  39. [39]
    Muon (g-2) collaboration, G.W. Bennett et al., An Improved Limit on the Muon Electric Dipole Moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].
  40. [40]
    Belle collaboration, K. Inami et al., Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].
  41. [41]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].
  44. [44]
    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  46. [46]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  47. [47]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  48. [48]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  49. [49]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  50. [50]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  51. [51]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  52. [52]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
  53. [53]
    M. Klasen, C.E. Yaguna, J.D. Ruiz-Alvarez, D. Restrepo and O. Zapata, Scalar dark matter and fermion coannihilations in the radiative seesaw model, JCAP 04 (2013) 044 [arXiv:1302.5298] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Bringmann, L. Bergstrom and J. Edsjo, New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    H. Okada and T. Toma, Effect of Degenerate Particles on Internal Bremsstrahlung of Majorana Dark Matter, Phys. Lett. B 750 (2015) 266 [arXiv:1411.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].
  57. [57]
    C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the Inert Doublet Dark Matter Model with Cherenkov Telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].ADSGoogle Scholar
  59. [59]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  60. [60]
    PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  61. [61]
    H.E.S.S. collaboration, A. Abramowski et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].
  62. [62]
    H.E.S.S. collaboration, H. Abdalla et al., H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center, Phys. Rev. Lett. 117 (2016) 151302 [arXiv:1609.08091] [INSPIRE].
  63. [63]
    S. Kashiwase and D. Suematsu, Baryon number asymmetry and dark matter in the neutrino mass model with an inert doublet, Phys. Rev. D 86 (2012) 053001 [arXiv:1207.2594] [INSPIRE].
  64. [64]
    S. Kashiwase and D. Suematsu, Leptogenesis and dark matter detection in a TeV scale neutrino mass model with inverted mass hierarchy, Eur. Phys. J. C 73 (2013) 2484 [arXiv:1301.2087] [INSPIRE].
  65. [65]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.Physik-Department T30d, Technische Universität MünchenGarchingGermany

Personalised recommendations