Advertisement

Wilson loop form factors: a new duality

  • Dmitry Chicherin
  • Paul Heslop
  • Gregory P. Korchemsky
  • Emery Sokatchev
Open Access
Regular Article - Theoretical Physics
  • 71 Downloads

Abstract

We find a new duality for form factors of lightlike Wilson loops in planar \( \mathcal{N} \) = 4 super-Yang-Mills theory. The duality maps a form factor involving an n-sided lightlike polygonal super-Wilson loop together with m external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analytic continuation from Minkowski to Euclidean space. We illustrate all of these subtleties explicitly in the simplest non-trivial NMHV-like case.

Keywords

Duality in Gauge Field Theories Scattering Amplitudes Superspaces Wilson ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.V. Belitsky, G.P. Korchemsky and E. Sokatchev, Are scattering amplitudes dual to super Wilson loops?, Nucl. Phys. B 855 (2012) 333 [arXiv:1103.3008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, JHEP 12 (2011) 002 [arXiv:1007.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: part I, Nucl. Phys. B 869 (2013) 329 [arXiv:1103.3714] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: part II, Nucl. Phys. B 869 (2013) 378 [arXiv:1103.4353] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Adamo, M. Bullimore, L. Mason and D. Skinner, A proof of the supersymmetric correlation function/Wilson loop correspondence, JHEP 08 (2011) 076 [arXiv:1103.4119] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O.T. Engelund and R. Roiban, Correlation functions of local composite operators from generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in N = 4 SYM from twistor space, JHEP 06 (2016) 162 [arXiv:1604.00012] [INSPIRE].
  16. [16]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, On form factors and correlation functions in twistor space, JHEP 03 (2017) 131 [arXiv:1611.08599] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q 2 = 0 in N = 4 SYM theory, JHEP 12 (2016) 076 [arXiv:1607.00503] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.V. Bork and A.I. Onishchenko, Wilson lines, Grassmannians and gauge invariant off-shell amplitudes in N = 4 SYM, JHEP 04 (2017) 019 [arXiv:1607.02320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    S. É. Derkachov, G.P. Korchemsky and A.N. Manashov, Dual conformal symmetry on the light-cone, Nucl. Phys. B 886 (2014) 1102 [arXiv:1306.5951] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Caron-Huot, unpublished notes.Google Scholar
  21. [21]
    J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super-Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, Holography in superspace, JHEP 07 (2000) 045 [hep-th/0007104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Chicherin and E. Sokatchev, N = 4 super-Yang-Mills in LHC superspace part I: classical and quantum theory, JHEP 02 (2017) 062 [arXiv:1601.06803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L.J. Mason, Twistor actions for non-self-dual fields: a derivation of twistor-string theory, JHEP 10 (2005) 009 [hep-th/0507269] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Boels, L.J. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP 02 (2007) 014 [hep-th/0604040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A.A. Rosly and K.G. Selivanov, On amplitudes in selfdual sector of Yang-Mills theory, Phys. Lett. B 399 (1997) 135 [hep-th/9611101] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Bullimore, L.J. Mason and D. Skinner, MHV diagrams in momentum twistor space, JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Chicherin et al., Correlation functions of the chiral stress-tensor multiplet in N = 4 SYM, JHEP 06 (2015) 198 [arXiv:1412.8718] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Chicherin and E. Sokatchev, N = 4 super-Yang-Mills in LHC superspace part II: non-chiral correlation functions of the stress-tensor multiplet, JHEP 03 (2017) 048 [arXiv:1601.06804] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D. Chicherin and E. Sokatchev, Composite operators and form factors in N = 4 SYM, J. Phys. A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M.F. Sohnius, Bianchi identities for supersymmetric gauge theories, Nucl. Phys. B 136 (1978) 461 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Sokatchev, An action for N = 4 supersymmetric selfdual Yang-Mills theory, Phys. Rev. D 53 (1996) 2062 [hep-th/9509099] [INSPIRE].ADSGoogle Scholar
  34. [34]
    B.M. Zupnik, The action of the supersymmetric N = 2 gauge theory in harmonic superspace, Phys. Lett. B 183 (1987) 175 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046[arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
  39. [39]
    R.S. Ward, On selfdual gauge fields, Phys. Lett. A 61 (1977) 81 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E. Sokatchev, Gauge field geometry from complex and harmonic analyticities. Kähler and selfdual Yang-Mills cases, Annals Phys. 185 (1988) 1 [INSPIRE].
  41. [41]
    C. Lovelace, Twistors versus harmonics, arXiv:1006.4289 [INSPIRE].
  42. [42]
    M. Bullimore and D. Skinner, Holomorphic linking, loop equations and scattering amplitudes in twistor space, arXiv:1101.1329 [INSPIRE].
  43. [43]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Dmitry Chicherin
    • 1
  • Paul Heslop
    • 2
  • Gregory P. Korchemsky
    • 3
  • Emery Sokatchev
    • 4
    • 5
  1. 1.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany
  2. 2.Mathematics DepartmentDurham University, Science LaboratoriesDurhamU.K.
  3. 3.Institut de Physique Théorique, (Unité de Recherche Associée au CNRS UMR 3681) CEA SaclayGif-sur-Yvette CedexFrance
  4. 4.LAPTh, (Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR 5108) Université de Savoie, CNRSAnnecy-le-VieuxFrance
  5. 5.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations