Advertisement

Anomalous non-conservation of fermion/chiral number in Abelian gauge theories at finite temperature

  • Daniel G. Figueroa
  • Mikhail Shaposhnikov
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss the non-conservation of fermion number (or chirality breaking, depending on the fermionic charge assignment) in Abelian gauge theories at finite temperature. We study different mechanisms of fermionic charge disappearance in the high temperature plasma, using both analytical estimates and real-time classical lattice numerical simulations. We investigate the random walk of the Chern-Simons number \( Q\propto {{\displaystyle \int d}}^4x{F}_{\mu \nu }{\tilde{F}}^{\mu \nu } \), and show that it has a diffusive behaviour in the presence of an external magnetic field B. This indicates that the mechanism for fermionic number non-conservation for B ≠ 0, is due to fluctuations of the gauge fields, similarly as in the case of non-Abelian gauge theories. We have determined numerically, with lattice simulations, the rate Γ of chirality non-conservation, extracting it from the diffusion process. We find that it is a factor ∼ 60 larger compared to previous theoretical estimates, what calls for a revision of the implications of Abelian fermion number and chirality non-conservation for baryogenesis, magnetogenesis and chiral symmetry evolution.

Keywords

Anomalies in Field and String Theories Cosmology of Theories beyond the SM Lattice Quantum Field Theory Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].
  6. [6]
    G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199].Google Scholar
  7. [7]
    F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].ADSGoogle Scholar
  8. [8]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36.ADSCrossRefGoogle Scholar
  9. [9]
    L.D. McLerran, E. Mottola and M.E. Shaposhnikov, Sphalerons and Axion Dynamics in High Temperature QCD, Phys. Rev. D 43 (1991) 2027 [INSPIRE].ADSGoogle Scholar
  10. [10]
    C.G. Callan, Jr., R.F. Dashen and D.J. Gross, The Structure of the Gauge Theory Vacuum, Phys. Lett. B 63 (1976) 334.ADSCrossRefGoogle Scholar
  11. [11]
    R. Jackiw and C. Rebbi, Vacuum Periodicity in a Yang-Mills Quantum Theory, Phys. Rev. Lett. 37 (1976) 172 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys. Rev. D 57 (1998) 2186 [hep-ph/9710234] [INSPIRE].
  13. [13]
    K. Kamada and A.J. Long, Baryogenesis from decaying magnetic helicity, Phys. Rev. D 94 (2016) 063501 [arXiv:1606.08891] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Kamada and A.J. Long, Evolution of the Baryon Asymmetry through the Electroweak Crossover in the Presence of a Helical Magnetic Field, Phys. Rev. D 94 (2016) 123509 [arXiv:1610.03074] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Joyce and M.E. Shaposhnikov, Primordial magnetic fields, right-handed electrons and the Abelian anomaly, Phys. Rev. Lett. 79 (1997) 1193 [astro-ph/9703005] [INSPIRE].
  16. [16]
    A. Boyarsky, J. Fröhlich and O. Ruchayskiy, Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe, Phys. Rev. Lett. 108 (2012) 031301 [arXiv:1109.3350] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V.A. Rubakov, On the Electroweak Theory at High Fermion Density, Prog. Theor. Phys. 75 (1986) 366 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A.N. Redlich and L.C.R. Wijewardhana, Induced Chern-Simons Terms at High Temperatures and Finite Densities, Phys. Rev. Lett. 54 (1985) 970 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A.J. Niemi and G.W. Semenoff, Quantum Holonomy and the Chiral Gauge Anomaly, Phys. Rev. Lett. 55 (1985) 927 [Erratum ibid. 55 (1985) 2627] [INSPIRE].
  21. [21]
    E. Fradkin, Green’s Function Method in Quantum Field Theory and Quantum Statistics, Proc. P.N. Lebedev Inst. 29 (1965) 7.Google Scholar
  22. [22]
    O.K. Kalashnikov and V.V. Klimov, Infrared Behavior of the Polarization Operator in Scalar Electrodynamics at Finite Temperature, Phys. Lett. B 95 (1980) 423.ADSCrossRefGoogle Scholar
  23. [23]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A Nonperturbative analysis of the finite T phase transition in SU(2)0 × U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [INSPIRE].
  24. [24]
    G. Baym and H. Heiselberg, The Electrical conductivity in the early universe, Phys. Rev. D 56 (1997) 5254 [astro-ph/9704214] [INSPIRE].
  25. [25]
    Y. Akamatsu and N. Yamamoto, Chiral Plasma Instabilities, Phys. Rev. Lett. 111 (2013) 052002 [arXiv:1302.2125] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.D. Linde, Infrared Problem in Thermodynamics of the Yang-Mills Gas, Phys. Lett. B 96 (1980) 289.ADSCrossRefGoogle Scholar
  27. [27]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, 3 − D SU(N ) + adjoint Higgs theory and finite temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [INSPIRE].
  28. [28]
    S. Yu. Khlebnikov and M.E. Shaposhnikov, The Statistical Theory of Anomalous Fermion Number Nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P.B. Arnold and L.D. McLerran, Sphalerons, Small Fluctuations and Baryon Number Violation in Electroweak Theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].ADSGoogle Scholar
  30. [30]
    L. Carson, X. Li, L.D. McLerran and R.-T. Wang, Exact Computation of the Small Fluctuation Determinant Around a Sphaleron, Phys. Rev. D 42 (1990) 2127 [INSPIRE].ADSGoogle Scholar
  31. [31]
    P.B. Arnold, D. Son and L.G. Yaffe, The Hot baryon violation rate is O(α w5 T 4), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].
  32. [32]
    D. Bödeker, On the effective dynamics of soft nonAbelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].
  33. [33]
    P.B. Arnold, D.T. Son and L.G. Yaffe, Effective dynamics of hot, soft nonAbelian gauge fields. Color conductivity and log(1/alpha) effects, Phys. Rev. D 59 (1999) 105020 [hep-ph/9810216] [INSPIRE].
  34. [34]
    G.D. Moore, The Sphaleron rate: Bodeker’s leading log, Nucl. Phys. B 568 (2000) 367 [hep-ph/9810313] [INSPIRE].
  35. [35]
    D. Yu. Grigoriev and V.A. Rubakov, Soliton Pair Creation at Finite Temperatures. Numerical Study in (1 + 1)-dimensions, Nucl. Phys. B 299 (1988) 67 [INSPIRE].
  36. [36]
    D. Yu. Grigoriev, V.A. Rubakov and M.E. Shaposhnikov, Topological transitions at finite temperatures: a real time numerical approach, Nucl. Phys. B 326 (1989) 737 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Ambjørn, T. Askgaard, H. Porter and M.E. Shaposhnikov, Sphaleron transitions and baryon asymmetry: A Numerical real time analysis, Nucl. Phys. B 353 (1991) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
  39. [39]
    G.D. Moore and K. Rummukainen, Classical sphaleron rate on fine lattices, Phys. Rev. D 61 (2000) 105008 [hep-ph/9906259] [INSPIRE].
  40. [40]
    G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 014503 [hep-ph/9805264] [INSPIRE].
  41. [41]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G.D. Moore, Motion of Chern-Simons number at high temperatures under a chemical potential, Nucl. Phys. B 480 (1996) 657 [hep-ph/9603384] [INSPIRE].
  43. [43]
    A.J. Long, E. Sabancilar and T. Vachaspati, Leptogenesis and Primordial Magnetic Fields, JCAP 02 (2014) 036 [arXiv:1309.2315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A.J. Long and E. Sabancilar, Chiral Charge Erasure via Thermal Fluctuations of Magnetic Helicity, JCAP 05 (2016) 029 [arXiv:1601.03777] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.G. Figueroa and M. Shaposhnikov, Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field, Nucl. Phys. B 926 (2018) 544 [arXiv:1705.09629] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G.D. Moore, Improved Hamiltonian for Minkowski Yang-Mills theory, Nucl. Phys. B 480 (1996) 689 [hep-lat/9605001] [INSPIRE].
  47. [47]
    K. Kajantie, M. Laine, J. Peisa, K. Rummukainen and M.E. Shaposhnikov, The Electroweak phase transition in a magnetic field, Nucl. Phys. B 544 (1999) 357 [hep-lat/9809004] [INSPIRE].
  48. [48]
    M. Laine and A. Rajantie, Lattice continuum relations for 3 − D SU(N ) + Higgs theories, Nucl. Phys. B 513 (1998) 471 [hep-lat/9705003] [INSPIRE].
  49. [49]
    P. Dimopoulos, K. Farakos and G. Koutsoumbas, Three-dimensional lattice U(1) gauge Higgs model at low m(H), Eur. Phys. J. C 1 (1998) 711 [hep-lat/9703004] [INSPIRE].
  50. [50]
    K. Kajantie, M. Karjalainen, M. Laine and J. Peisa, Masses and phase structure in the Ginzburg-Landau model, Phys. Rev. B 57 (1998) 3011 [cond-mat/9704056] [INSPIRE].
  51. [51]
    K. Kajantie, M. Karjalainen, M. Laine and J. Peisa, Three-dimensional U(1) gauge + Higgs theory as an effective theory for finite temperature phase transitions, Nucl. Phys. B 520 (1998) 345 [hep-lat/9711048] [INSPIRE].
  52. [52]
    N. Bevis, M. Hindmarsh, M. Kunz and J. Urrestilla, CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model, Phys. Rev. D 75 (2007) 065015 [astro-ph/0605018] [INSPIRE].
  53. [53]
    D.G. Figueroa, M. Hindmarsh and J. Urrestilla, Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects, Phys. Rev. Lett. 110 (2013) 101302 [arXiv:1212.5458] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Daverio, M. Hindmarsh, M. Kunz, J. Lizarraga and J. Urrestilla, Energy-momentum correlations for Abelian Higgs cosmic strings, Phys. Rev. D 93 (2016) 085014 [Erratum ibid. D 95 (2017) 049903] [arXiv:1510.05006] [INSPIRE].
  55. [55]
    M. Hindmarsh, J. Lizarraga, J. Urrestilla, D. Daverio and M. Kunz, Scaling from gauge and scalar radiation in Abelian Higgs string networks, Phys. Rev. D 96 (2017) 023525 [arXiv:1703.06696] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D.G. Figueroa, J. García-Bellido and F. Torrenti, Decay of the standard model Higgs field after inflation, Phys. Rev. D 92 (2015) 083511 [arXiv:1504.04600] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K. Enqvist, S. Nurmi, S. Rusak and D. Weir, Lattice Calculation of the Decay of Primordial Higgs Condensate, JCAP 02 (2016) 057 [arXiv:1506.06895] [INSPIRE].ADSGoogle Scholar
  58. [58]
    D.G. Figueroa and F. Torrenti, Parametric resonance in the early Universe — a fitting analysis, JCAP 02 (2017) 001 [arXiv:1609.05197] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04 (2006) 010 [astro-ph/0601617] [INSPIRE].
  60. [60]
    J. García-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014] [INSPIRE].
  61. [61]
    J. García-Bellido, D.G. Figueroa and A. Sastre, A Gravitational Wave Background from Reheating after Hybrid Inflation, Phys. Rev. D 77 (2008) 043517 [arXiv:0707.0839] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, Theory and Numerics of Gravitational Waves from Preheating after Inflation, Phys. Rev. D 76 (2007) 123517 [arXiv:0707.0875] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.-F. Dufaux, G. Felder, L. Kofman and O. Navros, Gravity Waves from Tachyonic Preheating after Hybrid Inflation, JCAP 03 (2009) 001 [arXiv:0812.2917] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D.G. Figueroa, J. García-Bellido and A. Rajantie, On the Transverse-Traceless Projection in Lattice Simulations of Gravitational Wave Production, JCAP 11 (2011) 015 [arXiv:1110.0337] [INSPIRE].
  65. [65]
    D.G. Figueroa, J. García-Bellido and F. Torrentí, Gravitational wave production from the decay of the standard model Higgs field after inflation, Phys. Rev. D 93 (2016) 103521 [arXiv:1602.03085] [INSPIRE].
  66. [66]
    D.G. Figueroa and F. Torrenti, Gravitational wave production from preheating: parameter dependence, JCAP 10 (2017) 057 [arXiv:1707.04533] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].ADSGoogle Scholar
  69. [69]
    D. Cutting, M. Hindmarsh and D.J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, arXiv:1802.05712 [INSPIRE].
  70. [70]
    J. Ambjørn and A. Krasnitz, The Classical sphaleron transition rate exists and is equal to 1.1(α w T )4, Phys. Lett. B 362 (1995) 97 [hep-ph/9508202] [INSPIRE].
  71. [71]
    P.B. Arnold, Hot B violation, the lattice and hard thermal loops, Phys. Rev. D 55 (1997) 7781 [hep-ph/9701393] [INSPIRE].
  72. [72]
    R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap. 12 (1957) 570 [INSPIRE].
  73. [73]
    U. Kraemmer, A.K. Rebhan and H. Schulz, Resummations in hot scalar electrodynamics, Annals Phys. 238 (1995) 286 [hep-ph/9403301] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theory DepartmentCERNGeneve 23Switzerland
  2. 2.Institute of Physics, Laboratory of Particle Physics and Cosmology, École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations