Advertisement

Near-horizon extremal geometries: coadjoint orbits and quantization

  • R. Javadinezhad
  • B. Oblak
  • M. M. Sheikh-Jabbari
Open Access
Regular Article - Theoretical Physics

Abstract

The NHEG algebra is an extension of Virasoro introduced in [arXiv:1503.07861]; it describes the symplectic symmetries of (n + 4)-dimensional Near Horizon Extremal Geometries with SL(2, ℝ) × U(1)n+ 1 isometry. In this work we construct the NHEG group and classify the (coadjoint) orbits of its action on phase space. As we show, the group consists of maps from an n-torus to the Virasoro group, so its orbits are bundles of standard Virasoro coadjoint orbits over T n. We also describe the unitary representations that are expected to follow from the quantization of these orbits, and display their characters. Along the way we show that the NHEG algebra can be built from u(1) currents using a twisted Sugawara construction.

Keywords

Black Holes Conformal and W Symmetry Space-Time Symmetries AdSCFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  2. [2]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  3. [3]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic soft hairs: The need to refine strict statement of equivalence principle, Int. J. Mod. Phys. D 25 (2016) 1644019 [arXiv:1603.07862] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic hair on black holes, seminar presented at the Recent developments in symmetries and (super)gravity theories, June 13-15, Istanbul, Turkey (2016).Google Scholar
  8. [8]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  9. [9]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, S.W. Hawking et al. eds., Cambridge University Press, Cambridge U.KJ. (1989).Google Scholar
  11. [11]
    A. Ashtekar, L. Bombelli and O. Reula, The covariant phase space of asymptotically flat gravitational fields, PRINT-90-0318 (1990).Google Scholar
  12. [12]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Compere, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, Ph.D. thesis, Brussels University, Brussels, Belgium (2007), arXiv:0708.3153 [INSPIRE].
  16. [16]
    K. Hajian, On thermodynamics and phase space of near horizon extremal geometries, Ph.D. thesis, Sharif University of Technology, Tehran, Iran (2015), arXiv:1508.03494 [INSPIRE].
  17. [17]
    A. Seraj, Conserved charges, surface degrees of freedom and black hole entropy, Ph.D. thesis, IPM, Tehran, Iran (2016), arXiv:1603.02442 [INSPIRE].
  18. [18]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  22. [22]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
  23. [23]
    G. Compère, The Kerr/CFT correspondence and its extensions, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    G. Compère, M. Guica and M.J. Rodriguez, Two virasoro symmetries in stringy warped AdS 3, JHEP 12 (2014) 012 [arXiv:1407.7871] [INSPIRE].
  25. [25]
    G. Compère, K. Hajian, A. Seraj and M.M. Sheikh-Jabbari, Extremal rotating black holes in the near-horizon limit: phase space and symmetry algebra, Phys. Lett. B 749 (2015) 443 [arXiv:1503.07861] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Compère, K. Hajian, A. Seraj and M.M. Sheikh-Jabbari, Wiggling throat of extremal black holes, JHEP 10 (2015) 093 [arXiv:1506.07181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Compère, P. Mao, A. Seraj and M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS 3 gravity: holographic vs boundary gravitons, JHEP 01 (2016) 080 [arXiv:1511.06079] [INSPIRE].
  28. [28]
    K. Hajian and M.M. Sheikh-Jabbari, Solution phase space and conserved charges: a general formulation for charges associated with exact symmetries, Phys. Rev. D 93 (2016) 044074 [arXiv:1512.05584] [INSPIRE].
  29. [29]
    M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    H. Afshar et al., Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].
  31. [31]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].
  32. [32]
    K. Hajian, M.M. Sheikh-Jabbari and H. Yavartanoo, Fluffing extreme Kerr, arXiv:1708.06378 [INSPIRE].
  33. [33]
    S. Hollands and A. Ishibashi, All vacuum near horizon geometries in arbitrary dimensions, Annales Henri Poincaré 10 (2010) 1537 [arXiv:0909.3462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    H. Golchin, M.M. Sheikh-Jabbari and A. Ghodsi, Dual 2d CFT identification of extremal black rings from holes, JHEP 10 (2013) 194 [arXiv:1308.1478] [INSPIRE].
  35. [35]
    A. Ghodsi, H. Golchin and M.M. Sheikh-Jabbari, More on five dimensional EVH black rings, JHEP 09 (2014) 036 [arXiv:1407.7484] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Hajian, A. Seraj and M.M. Sheikh-Jabbari, NHEG mechanics: laws of near horizon extremal geometry (thermo)dynamics, JHEP 03 (2014) 014 [arXiv:1310.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Hajian, A. Seraj and M.M. Sheikh-Jabbari, Near horizon extremal geometry perturbations: dynamical field perturbations vs. parametric variations, JHEP 10 (2014) 111 [arXiv:1407.1992] [INSPIRE].
  38. [38]
    M. Johnstone, M.M. Sheikh-Jabbari, J. Simon and H. Yavartanoo, Extremal black holes and the first law of thermodynamics, Phys. Rev. D 88 (2013) 101503 [arXiv:1305.3157] [INSPIRE].
  39. [39]
    V.F. Lazutkin and T.F. Pankratova, Normal forms and versal deformations for Hill’s equation, Funct. Anal. Appl. 9 (1975) 306.MathSciNetCrossRefGoogle Scholar
  40. [40]
    A.A. Kirillov, Orbits of the group of diffeomorphisms of a circle and local Lie superalgebras, Funct. Anal. Appl. 15 (1981) 135.MathSciNetCrossRefGoogle Scholar
  41. [41]
    E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    J. Balog, L. Feher and L. Palla, Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A 13 (1998) 315 [hep-th/9703045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    H. Salmasian and K.-H. Neeb, Classification of positive energy representations of the Virasoro group, arXiv:1402.6572 [INSPIRE].
  44. [44]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].
  45. [45]
    A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, Uniqueness of extremal Kerr and Kerr-Newman black holes, Phys. Rev. D 81 (2010) 024033 [arXiv:0906.2367] [INSPIRE].
  46. [46]
    V.P. Frolov and K.S. Thorne, Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole, Phys. Rev. D 39 (1989) 2125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    R. Bott, On the characteristic classes of groups of diffeomorphisms, Enseign. Math. 23 (1977) 209.MathSciNetzbMATHGoogle Scholar
  48. [48]
    L. Guieu and C. Roger, L’algèbre et le groupe de Virasoro, Publications du CRM, Université de Montréal, Montréal Canada (2007).Google Scholar
  49. [49]
    B. Oblak, BMS particles in three dimensions, Ph.D. thesis, Brussels University, Brussels, Belgium (2016), arXiv:1610.08526 [INSPIRE].
  50. [50]
    H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Near horizon soft hair as microstates of three dimensional black holes, Phys. Rev. D 96 (2017) 084032 [arXiv:1607.00009] [INSPIRE].
  51. [51]
    M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluffs: near horizon soft hairs as microstates of generic AdS 3 black holes, Phys. Rev. D 95 (2017) 044007 [arXiv:1608.01293] [INSPIRE].
  52. [52]
    H. Afshar, D. Grumiller, M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluff, semi-classical black hole microstates — Log-corrections to BTZ entropy and black hole/particle correspondence, JHEP 08 (2017) 087 [arXiv:1705.06257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    G. Barnich, H.A. Gonzalez, A. Maloney and B. Oblak, One-loop partition function of three-dimensional flat gravity, JHEP 04 (2015) 178 [arXiv:1502.06185] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    A. Garbarz and M. Leston, Classification of boundary gravitons in AdS 3 gravity, JHEP 05 (2014) 141 [arXiv:1403.3367] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS 3 geometries, Eur. Phys. J. C 76 (2016) 493 [arXiv:1603.05272] [INSPIRE].
  57. [57]
    G. Barnich and B. Oblak, Holographic positive energy theorems in three-dimensional gravity, Class. Quant. Grav. 31 (2014) 152001 [arXiv:1403.3835] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].
  59. [59]
    K. Hajian, M.M. Sheikh-Jabbari and H. Yavartanoo, work in progress.Google Scholar
  60. [60]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • R. Javadinezhad
    • 1
  • B. Oblak
    • 2
  • M. M. Sheikh-Jabbari
    • 3
  1. 1.Physics DepartmentNew York UniversityNew YorkU.S.A.
  2. 2.Institut für Theoretische Physik, ETH ZürichZürichSwitzerland
  3. 3.School of Physics, Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations