Gluino-mediated electroweak penguin with flavor-violating trilinear couplings

  • Motoi Endo
  • Toru Goto
  • Teppei Kitahara
  • Satoshi Mishima
  • Daiki Ueda
  • Kei Yamamoto
Open Access
Regular Article - Theoretical Physics
  • 3 Downloads

Abstract

In light of a discrepancy of the direct CP violation in Kππ decays, ε K , we investigate gluino contributions to the electroweak penguin, where flavor violations are induced by squark trilinear couplings. Top-Yukawa contributions to ΔS = 2 observables are taken into account, and vacuum stability conditions are evaluated in detail. It is found that this scenario can explain the discrepancy of ε K for the squark mass smaller than 5.6 TeV. We also show that the gluino contributions can amplify \( \mathrm{\mathcal{B}}\left(K\to \pi \nu \overline{\nu}\right) \), ℬ(K S  → μ+μ)eff and ΔACP(b). Such large effects could be measured in future experiments.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    RBC and UKQCD collaborations, Z. Bai et al., Standard Model prediction for direct CP-violation in Kππ decay, Phys. Rev. Lett. 115 (2015) 212001 [arXiv:1505.07863] [INSPIRE].
  2. [2]
    T. Blum et al., The K → (ππ)I=2 decay amplitude from lattice QCD, Phys. Rev. Lett. 108 (2012) 141601 [arXiv:1111.1699] [INSPIRE].
  3. [3]
    T. Blum et al., Lattice determination of the K → (ππ)I=2 decay amplitude A 2, Phys. Rev. D 86 (2012) 074513 [arXiv:1206.5142] [INSPIRE].
  4. [4]
    T. Blum et al., Kππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].
  5. [5]
    E. Pallante and A. Pich, Final state interactions in kaon decays, Nucl. Phys. B 592 (2001) 294 [hep-ph/0007208] [INSPIRE].
  6. [6]
    E. Pallante, A. Pich and I. Scimemi, The Standard Model prediction for ε , Nucl. Phys. B 617 (2001) 441 [hep-ph/0105011] [INSPIRE].
  7. [7]
    T. Hambye, S. Peris and E. de Rafael, ΔI = 1/2 and ε /ε in large N c QCD, JHEP 05 (2003) 027 [hep-ph/0305104] [INSPIRE].
  8. [8]
    H.G. Mullor, Updated Standard Model prediction for the kaon direct CP-violating ratio ε , talk at IX CPAN days, Santander Spain, 23-25 October 2017.Google Scholar
  9. [9]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ε /ε in the Standard Model, JHEP 11 (2015) 202 [arXiv:1507.06345] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Kitahara, U. Nierste and P. Tremper, Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and ε K/ε K in the Standard Model and beyond, JHEP 12 (2016) 078 [arXiv:1607.06727] [INSPIRE].
  11. [11]
    NA48 collaboration, J.R. Batley et al., A precision measurement of direct CP-violation in the decay of neutral kaons into two pions, Phys. Lett. B 544 (2002) 97 [hep-ex/0208009] [INSPIRE].
  12. [12]
    KTeV collaboration, A. Alavi-Harati et al., Measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev. D 67 (2003) 012005 [Erratum ibid. D 70 (2004) 079904] [hep-ex/0208007] [INSPIRE].
  13. [13]
    KTeV collaboration, E. Abouzaid et al., Precise measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev. D 83 (2011) 092001 [arXiv:1011.0127] [INSPIRE].
  14. [14]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin.Phys. C 40 (2016) 100001 [INSPIRE].
  15. [15]
    A.J. Buras and J.-M. Gérard, Upper bounds on ε /ε parameters B 6(1/2) and B 8(3/2) from large N QCD and other news, JHEP 12 (2015) 008 [arXiv:1507.06326] [INSPIRE].
  16. [16]
    A.J. Buras and J.-M. Gerard, Final state interactions in Kππ decays: ΔI = 1/2 rule vs. ε , Eur. Phys. J. C 77 (2017) 10 [arXiv:1603.05686] [INSPIRE].
  17. [17]
    M. Tanimoto and K. Yamamoto, Probing SUSY with 10 TeV stop mass in rare decays and CP-violation of kaon, PTEP 2016 (2016) 123B02 [arXiv:1603.07960] [INSPIRE].
  18. [18]
    M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Revisiting kaon physics in general Z scenario, Phys. Lett. B 771 (2017) 37 [arXiv:1612.08839] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, JHEP 07 (2017) 124 [arXiv:1703.04753] [INSPIRE].
  20. [20]
    CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].
  21. [21]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, arXiv:1712.02332 [INSPIRE].
  22. [22]
    M. Endo, S. Mishima, D. Ueda and K. Yamamoto, Chargino contributions in light of recent ε , Phys. Lett. B 762 (2016) 493 [arXiv:1608.01444] [INSPIRE].
  23. [23]
    T. Kitahara, U. Nierste and P. Tremper, Supersymmetric explanation of CP-violation in Kππ decays, Phys. Rev. Lett. 117 (2016) 091802 [arXiv:1604.07400] [INSPIRE].
  24. [24]
    A. Crivellin, G. D’Ambrosio, T. Kitahara and U. Nierste, \( K\to \pi \nu \overline{\nu} \) in the MSSM in light of the ε K/ε K anomaly, Phys. Rev. D 96 (2017) 015023 [arXiv:1703.05786] [INSPIRE].
  25. [25]
    V. Chobanova et al., Probing SUSY effects in K S0 → μ + μ , arXiv:1711.11030 [INSPIRE].
  26. [26]
    G. D’Ambrosio and T. Kitahara, Direct CP violation in Kμ + μ , Phys. Rev. Lett. 119 (2017) 201802 [arXiv:1707.06999] [INSPIRE].
  27. [27]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].
  33. [33]
    B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].
  34. [34]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].
  35. [35]
    G. Colangelo and G. Isidori, Supersymmetric contributions to rare kaon decays: beyond the single mass insertion approximation, JHEP 09 (1998) 009 [hep-ph/9808487] [INSPIRE].
  36. [36]
    A.J. Buras, New physics patterns in ε /ε and ε K with implications for rare kaon decays and ΔM K, JHEP 04 (2016) 071 [arXiv:1601.00005] [INSPIRE].
  37. [37]
    A. Masiero and H. Murayama, Can ε /ε be supersymmetric?, Phys. Rev. Lett. 83 (1999) 907 [hep-ph/9903363] [INSPIRE].
  38. [38]
    K.S. Babu, B. Dutta and R.N. Mohapatra, Seesaw constrained MSSM, solution to the SUSY CP problem and a supersymmetric explanation of ε , Phys. Rev. D 61 (2000) 091701 [hep-ph/9905464] [INSPIRE].
  39. [39]
    S. Khalil and T. Kobayashi, Supersymmetric CP-violation ε /ε due to asymmetric A-matrix, Phys. Lett. B 460 (1999) 341 [hep-ph/9906374] [INSPIRE].
  40. [40]
    S. Baek, J.H. Jang, P. Ko and J.-H. Park, Fully supersymmetric CP-violations in the kaon system, Phys. Rev. D 62 (2000) 117701 [hep-ph/9907572] [INSPIRE].
  41. [41]
    R. Barbieri, R. Contino and A. Strumia, ε from supersymmetry with nonuniversal A terms?, Nucl. Phys. B 578 (2000) 153 [hep-ph/9908255] [INSPIRE].
  42. [42]
    A.J. Buras, G. Colangelo, G. Isidori, A. Romanino and L. Silvestrini, Connections between ε /ε and rare kaon decays in supersymmetry, Nucl. Phys. B 566 (2000) 3 [hep-ph/9908371] [INSPIRE].
  43. [43]
    S. Baek, J.H. Jang, P. Ko and J.-H. Park, Gluino squark contributions to CP-violations in the kaon system, Nucl. Phys. B 609 (2001) 442 [hep-ph/0105028] [INSPIRE].
  44. [44]
    A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].
  45. [45]
    J.S. Hagelin, S. Kelley and T. Tanaka, Supersymmetric flavor changing neutral currents: exact amplitudes and phenomenological analysis, Nucl. Phys. B 415 (1994) 293 [INSPIRE].
  46. [46]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the Standard Model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  47. [47]
    RBC/UKQCD collaboration, N. Garron, R.J. Hudspith and A.T. Lytle, Neutral kaon mixing beyond the Standard Model with n f = 2 + 1 chiral fermions part 1: bare matrix elements and physical results, JHEP 11 (2016) 001 [arXiv:1609.03334] [INSPIRE].
  48. [48]
    SWME collaboration, Y.-C. Jang, W. Lee, S. Lee and J. Leem, Update on ε K with lattice QCD inputs, EPJ Web Conf. 175 (2018) 14015 [arXiv:1710.06614] [INSPIRE].
  49. [49]
    SWME collaboration, J.A. Bailey, Y.-C. Jang, W. Lee and S. Park, Standard Model evaluation of ε K using lattice QCD inputs for \( {\widehat{B}}_K \) and V cb, Phys. Rev. D 92 (2015) 034510 [arXiv:1503.05388] [INSPIRE].
  50. [50]
    A. Bevan et al., Standard Model updates and new physics analysis with the unitarity triangle fit, Nucl. Phys. Proc. Suppl. 241-242 (2013) 89 [INSPIRE].
  51. [51]
    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  52. [52]
    D. Bigi, P. Gambino and S. Schacht, A fresh look at the determination of |V cb| from BD ℓν, Phys. Lett. B 769 (2017) 441 [arXiv:1703.06124] [INSPIRE].
  53. [53]
    B. Grinstein and A. Kobach, Model-independent extraction of |V cb| from \( \overline{B}\to D\ast \ell \overline{\nu} \), Phys. Lett. B 771 (2017) 359 [arXiv:1703.08170] [INSPIRE].
  54. [54]
    F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Tensions and correlations in |V cb| determinations, Phys. Rev. D 96 (2017) 091503 [arXiv:1708.07134] [INSPIRE].
  55. [55]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
  56. [56]
    E391a collaboration, J.K. Ahn et al., Experimental study of the decay \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].
  57. [57]
    NA62 collaboration, E. Cortina Gil et al., The beam and detector of the NA62 experiment at CERN, 2017 JINST 12 P05025 [arXiv:1703.08501] [INSPIRE].
  58. [58]
    H. Nanjo, KOTO and KOTO step2 to search for the rare kaon decay, \( {K}_L\to {\pi}^0\nu \overline{\nu} \), talk at International workshop on physics at the extended hadron experimental facility of J-PARC, KEK, Tokai Japan, 5-6 March 2016.Google Scholar
  59. [59]
    G. Ruggiero, Recent results from kaon physics, talk at EPS Conference on High Energy Physics, Venice Italy, 5-12 July 2017.Google Scholar
  60. [60]
    M. Gorbahn and U. Haisch, Charm quark contribution to K Lμ + μ at next-to-next-to-leading, Phys. Rev. Lett. 97 (2006) 122002 [hep-ph/0605203] [INSPIRE].
  61. [61]
    C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to B s,d + , Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].
  62. [62]
    G. Isidori and R. Unterdorfer, On the short distance constraints from K L,Sμ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].
  63. [63]
    G. Ecker and A. Pich, The longitudinal muon polarization in K Lμ + μ , Nucl. Phys. B 366 (1991) 189 [INSPIRE].
  64. [64]
    F. Mescia, C. Smith and S. Trine, K Lπ 0 e + e and K Lπ 0 μ + μ : a binary star on the stage of flavor physics, JHEP 08 (2006) 088 [hep-ph/0606081] [INSPIRE].
  65. [65]
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    LHCb collaboration, Improved limit on the branching fraction of the rare decay K S0 → μ + μ , Eur. Phys. J. C 77 (2017) 678 [arXiv:1706.00758] [INSPIRE].
  67. [67]
    D.M. Santos, Physics of LHCb upgrade(s), talk at FPCP 2017 — Flavor Physics & CP Violation, Prague Czech Republic, 5-9 June 2017.Google Scholar
  68. [68]
    R. Malm, M. Neubert and C. Schmell, Impact of warped extra dimensions on the dipole coefficients in bsγ transitions, JHEP 04 (2016) 042 [arXiv:1509.02539] [INSPIRE].
  69. [69]
    T. Hurth, E. Lunghi and W. Porod, Untagged \( \overline{B}\to {X_s}_{+d\gamma } \) CP asymmetry as a probe for new physics, Nucl. Phys. B 704 (2005) 56 [hep-ph/0312260] [INSPIRE].
  70. [70]
    J.A. Evans and D. Shih, FormFlavor manual, arXiv:1606.00003 [INSPIRE].
  71. [71]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].
  72. [72]
    BaBar collaboration, P. del Amo Sanchez et al., Study of BXγ decays and determination of |V td /V ts|, Phys. Rev. D 82 (2010) 051101 [arXiv:1005.4087] [INSPIRE].
  73. [73]
    A. Crivellin and L. Mercolli, BX d γ and constraints on new physics, Phys. Rev. D 84 (2011) 114005 [arXiv:1106.5499] [INSPIRE].
  74. [74]
    M. Benzke, S.J. Lee, M. Neubert and G. Paz, Long-distance dominance of the CP asymmetry in BX s,d + γ decays, Phys. Rev. Lett. 106 (2011) 141801 [arXiv:1012.3167] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A.L. Kagan and M. Neubert, Direct CP-violation in BX s γ decays as a signature of new physics, Phys. Rev. D 58 (1998) 094012 [hep-ph/9803368] [INSPIRE].
  76. [76]
    BaBar collaboration, J.P. Lees et al., Measurements of direct CP asymmetries in BX s γ decays using sum of exclusive decays, Phys. Rev. D 90 (2014) 092001 [arXiv:1406.0534] [INSPIRE].
  77. [77]
    Belle collaboration, T. Horiguchi et al., Evidence for isospin violation and measurement of CP asymmetries in BK (892)γ, Phys. Rev. Lett. 119 (2017) 191802 [arXiv:1707.00394] [INSPIRE].
  78. [78]
    A. Ishikawa, private communication.Google Scholar
  79. [79]
    Belle II collaboration, S. Sandilya, Prospects for rare decays at Belle II, PoS(CKM2016)080 [arXiv:1706.01027] [INSPIRE].
  80. [80]
    J.-H. Park, Metastability bounds on flavour-violating trilinear soft terms in the MSSM, Phys. Rev. D 83 (2011) 055015 [arXiv:1011.4939] [INSPIRE].
  81. [81]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  82. [82]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].
  84. [84]
    M. Endo, T. Moroi, M.M. Nojiri and Y. Shoji, Renormalization-scale uncertainty in the decay rate of false vacuum, JHEP 01 (2016) 031 [arXiv:1511.04860] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  86. [86]
    T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].
  87. [87]
    T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E.M. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Motoi Endo
    • 1
    • 2
  • Toru Goto
    • 1
  • Teppei Kitahara
    • 3
    • 4
  • Satoshi Mishima
    • 1
  • Daiki Ueda
    • 2
  • Kei Yamamoto
    • 5
    • 6
  1. 1.Theory Center, IPNS, KEKTsukubaJapan
  2. 2.The Graduate University of Advanced Studies (Sokendai)TsukubaJapan
  3. 3.Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institute for Nuclear Physics (IKP), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  5. 5.Department of PhysicsNagoya UniversityNagoyaJapan
  6. 6.Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI)Nagoya UniversityNagoyaJapan

Personalised recommendations