How to succeed at holographic correlators without really trying

Open Access
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract

We give a detailed account of the methods introduced in [1] to calculate holographic four-point correlators in IIB supergravity on AdS5 × S5. Our approach relies entirely on general consistency conditions and maximal supersymmetry. We discuss two related methods, one in position space and the other in Mellin space. The position space method is based on the observation that the holographic four-point correlators of one-half BPS single-trace operators can be written as finite sums of contact Witten diagrams. We demonstrate in several examples that imposing the superconformal Ward identity is sufficient to fix the parameters of this ansatz uniquely, avoiding the need for a detailed knowledge of the supergravity effective action. The Mellin space approach is an “on-shell method” inspired by the close analogy between holographic correlators and flat space scattering amplitudes. We conjecture a compact formula for the four-point correlators of one-half BPS single-trace operators of arbitrary weights. Our general formula has the expected analytic structure, obeys the superconformal Ward identity, satisfies the appropriate asymptotic conditions and reproduces all the previously calculated cases. We believe that these conditions determine it uniquely.

Keywords

AdS-CFT Correspondence Conformal Field Theory Scattering Amplitudes Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    K.A. Intriligator, Bonus symmetries of N = 4 superYang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    K.A. Intriligator and W. Skiba, Bonus symmetry and the operator product expansion of N = 4 Super Yang-Mills, Nucl. Phys. B 559 (1999) 165 [hep-th/9905020] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    B. Eden, P.S. Howe and P.C. West, Nilpotent invariants in N = 4 SYM, Phys. Lett. B 463 (1999) 19 [hep-th/9905085] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Petkou and K. Skenderis, A nonrenormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Explicit construction of nilpotent covariants in N = 4 SYM, Nucl. Phys. B 571 (2000) 71 [hep-th/9910011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    P.J. Heslop and P.S. Howe, OPEs and three-point correlators of protected operators in N = 4 SYM, Nucl. Phys. B 626 (2002) 265 [hep-th/0107212] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators in the AdS/CFT correspondence, hep-th/9908160 [INSPIRE].
  12. [12]
    M. Bianchi and S. Kovacs, Nonrenormalization of extremal correlators in N = 4 SYM theory, Phys. Lett. B 468 (1999) 102 [hep-th/9910016] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Extremal correlators in four-dimensional SCFT, Phys. Lett. B 472 (2000) 323 [hep-th/9910150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J. Erdmenger and M. Pérez-Victoria, Nonrenormalization of next-to-extremal correlators in N =4 SYM and the AdS/CFT correspondence, Phys. Rev. D 62 (2000) 045008 [hep-th/9912250] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B.U. Eden, P.S. Howe, E. Sokatchev and P.C. West, Extremal and next-to-extremal n point correlators in four-dimensional SCFT, Phys. Lett. B 494 (2000) 141 [hep-th/0004102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    T. Fleury and S. Komatsu, Hexagonalization of Correlation Functions, JHEP 01 (2017) 130 [arXiv:1611.05577] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in \( \mathcal{N}=4 \) SYM, JHEP 10 (2017) 098 [arXiv:1611.05436] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    B. Basso, F. Coronado, S. Komatsu, H.T. Lam, P. Vieira and D.-l. Zhong, Asymptotic Four Point Functions, arXiv:1701.04462 [INSPIRE].
  19. [19]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    G. Arutyunov and E. Sokatchev, On a large N degeneracy in N = 4 SYM and the AdS/CFT correspondence, Nucl. Phys. B 663 (2003) 163 [hep-th/0301058] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L. Berdichevsky and P. Naaijkens, Four-point functions of different-weight operators in the AdS/CFT correspondence, JHEP 01 (2008) 071 [arXiv:0709.1365] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    L.I. Uruchurtu, Four-point correlators with higher weight superconformal primaries in the AdS/CFT Correspondence, JHEP 03 (2009) 133 [arXiv:0811.2320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    L.I. Uruchurtu, Next-next-to-extremal Four Point Functions of N = 4 1/2 BPS Operators in the AdS/CFT Correspondence, JHEP 08 (2011) 133 [arXiv:1106.0630] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    E. D’Hoker, J. Erdmenger, D.Z. Freedman and M. Pérez-Victoria, Near extremal correlators and vanishing supergravity couplings in AdS/CFT, Nucl. Phys. B 589 (2000) 3 [hep-th/0003218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    G. Arutyunov and S. Frolov, Scalar quartic couplings in type IIB supergravity on AdS 5 × S 5, Nucl. Phys. B 579 (2000) 117 [hep-th/9912210] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    G. Arutyunov and S. Frolov, On the correspondence between gravity fields and CFT operators, JHEP 04 (2000) 017 [hep-th/0003038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS d+1, Nucl. Phys. B 544 (1999) 612 [hep-th/9809179] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS d+1, Nucl. Phys. B 550 (1999) 261 [hep-th/9811257] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    H. Liu, Scattering in anti-de Sitter space and operator product expansion, Phys. Rev. D 60 (1999) 106005 [hep-th/9811152] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton and gauge boson propagators in AdS d+1, Nucl. Phys. B 562 (1999) 330 [hep-th/9902042] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three point functions in SYM(4) at large N, Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press (2015).Google Scholar
  39. [39]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016).Google Scholar
  40. [40]
    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  41. [41]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    F.A. Dolan, M. Nirschl and H. Osborn, Conjectures for large N superconformal N = 4 chiral primary four point functions, Nucl. Phys. B 749 (2006) 109 [hep-th/0601148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Lee, AdS 5 /CFT 4 four point functions of chiral primary operators: Cubic vertices, Nucl. Phys. B 563 (1999) 349 [hep-th/9907108] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Arutyunov, S. Frolov, R. Klabbers and S. Savin, Towards 4-point correlation functions of any 1/2-BPS operators from supergravity, JHEP 04 (2017) 005 [arXiv:1701.00998] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    V. Gonçalves, J. Penedones and E. Trevisani, Factorization of Mellin amplitudes, JHEP 10 (2015) 040 [arXiv:1410.4185] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M.F. Paulos, M. Spradlin and A. Volovich, Mellin Amplitudes for Dual Conformal Integrals, JHEP 08 (2012) 072 [arXiv:1203.6362] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    D. Nandan, M.F. Paulos, M. Spradlin and A. Volovich, Star Integrals, Convolutions and Simplices, JHEP 05 (2013) 105 [arXiv:1301.2500] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    D.A. Lowe, Mellin transforming the minimal model CFTs: AdS/CFT at strong curvature, Phys. Lett. B 760 (2016) 494 [arXiv:1602.05613] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP 11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
  58. [58]
    A.A. Nizami, A. Rudra, S. Sarkar and M. Verma, Exploring Perturbative Conformal Field Theory in Mellin space, JHEP 01 (2017) 102 [arXiv:1607.07334] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP 07 (2017) 019 [arXiv:1612.05032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    L. Rastelli and X. Zhou, The Mellin Formalism for Boundary CFT d, JHEP 10 (2017) 146 [arXiv:1705.05362] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  63. [63]
    P. Dey, K. Ghosh and A. Sinha, Simplifying large spin bootstrap in Mellin space, JHEP 01 (2018) 152 [arXiv:1709.06110] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].
  65. [65]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP 12 (2017) 013 [arXiv:1705.03453] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    L.F. Alday, A. Bissi and E. Perlmutter, Holographic Reconstruction of AdS Exchanges from Crossing Symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, arXiv:1705.02934 [INSPIRE].
  71. [71]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B 607 (2001) 191 [hep-th/0009106] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  73. [73]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    D. Ponomarev, A Note on (Non)-Locality in Holographic Higher Spin Theories, Universe 4 (2018) 2 [arXiv:1710.00403] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Unmixing Supergravity, JHEP 02 (2018) 133 [arXiv:1706.08456] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    F. Aprile, J. Drummond, P. Heslop and H. Paul, The double-trace spectrum of N = 4 SYM at strong coupling, arXiv:1802.06889 [INSPIRE].
  77. [77]
    F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    K. Symanzik, On Calculations in conformal invariant field theories, Lett. Nuovo Cim. 3 (1972) 734 [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    L.F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS 5 × S 5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum Gravity from Conformal Field Theory, JHEP 01 (2018) 035 [arXiv:1706.02822] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. Raju, BCFW for Witten Diagrams, Phys. Rev. Lett. 106 (2011) 091601 [arXiv:1011.0780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev. D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].ADSGoogle Scholar
  84. [84]
    L. Rastelli and X. Zhou, Holographic Four-Point Functions in the (2, 0) Theory, arXiv:1712.02788 [INSPIRE].
  85. [85]
    L. Rastelli, K. Roumpedakis and X. Zhou, in progress.Google Scholar
  86. [86]
    A. Galliani, S. Giusto and R. Russo, Holographic 4-point correlators with heavy states, JHEP 10 (2017) 040 [arXiv:1705.09250] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  87. [87]
    X. Zhou, On Superconformal Four-Point Mellin Amplitudes in Dimension d > 2, arXiv:1712.02800 [INSPIRE].
  88. [88]
    A. Naqvi, Propagators for massive symmetric tensor and p forms in AdS d+1, JHEP 12 (1999) 025 [hep-th/9911182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations