Flavor-safe light squarks in Higgs-anomaly mediation

Open Access
Regular Article - Theoretical Physics


We consider a simple setup with light squarks which is free from the gravitino and SUSY flavor problems. In our setup, a SUSY breaking sector is sequestered from the matter and gauge sectors, and it only couples to the Higgs sector directly with \( \mathcal{O}(100) \) TeV gravitino. Resulting mass spectra of sfermions are split: the first and second generation sfermions are light as \( \mathcal{O}(1) \) TeV while the third generation sfermions are heavy as \( \mathcal{O}(10) \) TeV. The light squarks of \( \mathcal{O}(1) \) TeV can be searched at the (high-luminosity) LHC and future collider experiments. Our scenario can naturally avoid too large flavor-changing neutral currents and it is consistent with the ϵ K constraint. Moreover, there are regions explaining the muon g − 2 anomaly and bottom-tau/top-bottom-tau Yukawa coupling unification simultaneously.


Supersymmetric Standard Model Kaon Physics Cosmology of Theories beyond the SM GUT 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Inoue, M. Kawasaki, M. Yamaguchi and T. Yanagida, Vanishing squark and slepton masses in a class of supergravity models, Phys. Rev. D 45 (1992) 328 [INSPIRE].
  2. [2]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  4. [4]
    W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett. B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].
  5. [5]
    T.T. Yanagida, W. Yin and N. Yokozaki, Nambu-Goldstone boson hypothesis for squarks and sleptons in pure gravity mediation, JHEP 09 (2016) 086 [arXiv:1608.06618] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible signals of wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].
  7. [7]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].
  8. [8]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  9. [9]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].
  11. [11]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].
  12. [12]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric Standard Model, Phys. Lett. B 262 (1991) 54 [INSPIRE].
  13. [13]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].
  14. [14]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].
  15. [15]
    M. Yamaguchi and W. Yin, A novel approach to finely tuned supersymmetric Standard Models: the case of the non-universal Higgs mass model, PTEP 2018 (2018) 023B06 [arXiv:1606.04953] [INSPIRE].
  16. [16]
    O. Bruning, O. Dominguez, S. Myers, L. Rossi, E. Todesco and F. Zimmermann, HE-LHC beam-parameters, optics and beam-dynamics issues, in Proceedings, EuCARD-AccNet-EuroLumi Workshop: the High-Energy Large Hadron Collider (HE-LHC10), Villa Bighi Republic of Malta, 14-16 October 2010 [arXiv:1108.1617] [INSPIRE].
  17. [17]
    FCC collaboration, Future Circular Collider study hadron collider parameters, tech. rep. FCC-ACC-SPC-0001, CERN Geneva Switzerland, (2014).Google Scholar
  18. [18]
    CEPC-SPPC Study Group, Preliminary conceptual design report. Volume I — physics & detector, http://cepc.ihep.ac.cn/preCDR/main_preCDR.pdf, (2015).
  19. [19]
    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J. C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].
  20. [20]
    Y. Alexahin et al., Muon collider Higgs factory for Snowmass 2013, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July-6 August 2013 [arXiv:1308.2143] [INSPIRE].
  21. [21]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  22. [22]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].
  23. [23]
    SWME collaboration, Y.-C. Jang, W. Lee, S. Lee and J. Leem, Update on ε K with lattice QCD inputs, EPJ Web Conf. 175 (2018) 14015 [arXiv:1710.06614] [INSPIRE].
  24. [24]
    R. Rattazzi, C.A. Scrucca and A. Strumia, Brane to brane gravity mediation of supersymmetry breaking, Nucl. Phys. B 674 (2003) 171 [hep-th/0305184] [INSPIRE].
  25. [25]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the Standard Model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].
  26. [26]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].
  27. [27]
    T. Kugo and T.T. Yanagida, Coupling supersymmetric nonlinear σ-models to supergravity, Prog. Theor. Phys. 124 (2010) 555 [arXiv:1003.5985] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    T. Goto and T. Yanagida, Nonlinear σ-model coupled to a broken supergravity, Prog. Theor. Phys. 83 (1990) 1076 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].
  30. [30]
    S. Chigusa and T. Moroi, Bottom-tau unification in a supersymmetric model with anomaly-mediation, Phys. Rev. D 94 (2016) 035016 [arXiv:1604.02156] [INSPIRE].
  31. [31]
    S. Chigusa and T. Moroi, Bottom-tau unification in supersymmetric SU(5) models with extra matters, PTEP 2017 (2017) 063B05 [arXiv:1702.00790] [INSPIRE].
  32. [32]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].
  34. [34]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric Standard Model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
  35. [35]
    J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass determination in supersymmetry, JHEP 07 (2015) 159 [arXiv:1504.05200] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  37. [37]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].
  38. [38]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  39. [39]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].
  40. [40]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric Standard Model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499 [arXiv:1608.01880] [INSPIRE].
  42. [42]
    H. Bahl, S. Heinemeyer, W. Hollik and G. Weiglein, Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass, Eur. Phys. J. C 78 (2018) 57 [arXiv:1706.00346] [INSPIRE].
  43. [43]
    P. Athron, J.-H. Park, T. Steudtner, D. Stöckinger and A. Voigt, Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales, JHEP 01 (2017) 079 [arXiv:1609.00371] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P. Athron et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models, arXiv:1710.03760 [INSPIRE].
  45. [45]
    P. Draper and H. Rzehak, A review of Higgs mass calculations in supersymmetric models, Phys. Rept. 619 (2016) 1 [arXiv:1601.01890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    E. Bagnaschi, J. Pardo Vega and P. Slavich, Improved determination of the Higgs mass in the MSSM with heavy superpartners, Eur. Phys. J. C 77 (2017) 334 [arXiv:1703.08166] [INSPIRE].
  47. [47]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, arXiv:1712.02332 [INSPIRE].
  48. [48]
    T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].
  49. [49]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].
  50. [50]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  51. [51]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  52. [52]
    J. Ellis, F. Luo and K.A. Olive, Gluino coannihilation revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Reinert and M.W. Winkler, A precision search for WIMPs with charged cosmic rays, JCAP 01 (2018) 055 [arXiv:1712.00002] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
  55. [55]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
  56. [56]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].
  57. [57]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX s γ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [INSPIRE].
  59. [59]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].
  60. [60]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  61. [61]
    P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Running minimal flavor violation, Phys. Lett. B 668 (2008) 202 [arXiv:0805.3989] [INSPIRE].
  62. [62]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].
  63. [63]
    A. Freitas, E. Gasser and U. Haisch, Supersymmetric large tan β corrections to ΔM d,s and B d,sμ + μ revisited, Phys. Rev. D 76 (2007) 014016 [hep-ph/0702267] [INSPIRE].
  64. [64]
    T. Goto, Personal webpage, http://research.kek.jp/people/tgoto/.
  65. [65]
    CMS collaboration, Search for selectrons and smuons at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-17-009, CERN, Geneva Switzerland, (2017).
  66. [66]
    CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].
  67. [67]
    A.L. Kagan and M. Neubert, Large \( \Delta I=\frac{3}{2} \) contribution to ϵ /ϵ in supersymmetry, Phys. Rev. Lett. 83 (1999) 4929 [hep-ph/9908404] [INSPIRE].
  68. [68]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].
  69. [69]
    T. Moroi, R. Sato and T.T. Yanagida, Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].
  70. [70]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].
  71. [71]
    M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].
  72. [72]
    K. Nakayama and N. Yokozaki, Peccei-Quinn extended gauge-mediation model with vector-like matter, JHEP 11 (2012) 158 [arXiv:1204.5420] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Sato, K. Tobioka and N. Yokozaki, Enhanced diphoton signal of the Higgs boson and the muon g − 2 in gauge mediation models, Phys. Lett. B 716 (2012) 441 [arXiv:1208.2630] [INSPIRE].
  74. [74]
    Y. Shimizu and W. Yin, Natural split mechanism for sfermions: N = 2 supersymmetry in phenomenology, Phys. Lett. B 754 (2016) 118 [arXiv:1509.04933] [INSPIRE].
  75. [75]
    W. Yin, Fixed point and anomaly mediation in partially N = 2 supersymmetric Standard Models, Chin. Phys. C 42 (2018) 013104 [arXiv:1609.03527] [INSPIRE].
  76. [76]
    T. Higaki, M. Nishida and N. Takeda, Flavor structure, Higgs boson mass and dark matter in supersymmetric model with vector-like generations, PTEP 2017 (2017) 083B04 [arXiv:1611.04322] [INSPIRE].
  77. [77]
    T. Fukuyama, N. Okada and H.M. Tran, Sparticle spectroscopy of the minimal SO(10) model, Phys. Lett. B 767 (2017) 295 [arXiv:1611.08341] [INSPIRE].
  78. [78]
    M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g−2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].
  79. [79]
    J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].
  80. [80]
    U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g−2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].
  81. [81]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  82. [82]
    S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].
  83. [83]
    G. Degrassi and G.F. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].
  84. [84]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M Z2) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
  85. [85]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z2), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  86. [86]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  87. [87]
    B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].
  88. [88]
    H. Fukuda, N. Nagata, H. Otono and S. Shirai, Higgsino dark matter or not: role of disappearing track searches at the LHC and future colliders, arXiv:1703.09675 [INSPIRE].
  89. [89]
    S. Asai, T. Moroi, K. Nishihara and T.T. Yanagida, Testing the anomaly mediation at the LHC, Phys. Lett. B 653 (2007) 81 [arXiv:0705.3086] [INSPIRE].
  90. [90]
    S. Asai, T. Moroi and T.T. Yanagida, Test of anomaly mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [INSPIRE].
  91. [91]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
  93. [93]
    R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].
  94. [94]
    N. Okada and Q. Shafi, WIMP dark matter inflation with observable gravity waves, Phys. Rev. D 84 (2011) 043533 [arXiv:1007.1672] [INSPIRE].
  95. [95]
    M. Bastero-Gil, R. Cerezo and J.G. Rosa, Inflaton dark matter from incomplete decay, Phys. Rev. D 93 (2016) 103531 [arXiv:1501.05539] [INSPIRE].
  96. [96]
    V.V. Khoze, Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    K. Nakayama and F. Takahashi, Running kinetic inflation, JCAP 11 (2010) 009 [arXiv:1008.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP 05 (2017) 044 [arXiv:1702.03284] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, arXiv:1710.11107 [INSPIRE].
  100. [100]
    K. Harigaya, T.T. Yanagida and N. Yokozaki, Seminatural SUSY from the E 7 nonlinear σ-model, PTEP 2015 (2015) 083B03 [arXiv:1504.02266] [INSPIRE].
  101. [101]
    J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, Phys. Rev. D 84 (2011) 115009 [arXiv:1106.0764] [INSPIRE].
  102. [102]
    J. Heisig and J. Kersten, Long-lived staus from strong production in a simplified model approach, Phys. Rev. D 86 (2012) 055020 [arXiv:1203.1581] [INSPIRE].
  103. [103]
    J.L. Feng, S. Iwamoto, Y. Shadmi and S. Tarem, Long-lived sleptons at the LHC and a 100 TeV proton collider, JHEP 12 (2015) 166 [arXiv:1505.02996] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Tsutomu T. Yanagida
    • 1
  • Wen Yin
    • 2
  • Norimi Yokozaki
    • 3
  1. 1.Kavli IPMU (WPI), UTIAS, University of TokyoKashiwaJapan
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations