Moving the CFT into the bulk with \( T\overline{T} \)

Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

Recent work by Zamolodchikov and others has uncovered a solvable irrelevant deformation of general 2D CFTs, defined by turning on the dimension 4 operator \( T\overline{T} \),the product of the left- and right-moving stress tensor. We propose that in the holographic dual, this deformation represents a geometric cutoff that removes the asymptotic region of AdS and places the QFT on a Dirichlet wall at finite radial distance r = r c in the bulk. As a quantitative check of the proposed duality, we compute the signal propagation speed, energy spectrum, and thermodynamic relations on both sides. In all cases, we obtain a precise match. We derive an exact RG flow equation for the metric dependence of the effective action of the \( T\overline{T} \) deformed theory, and find that it coincides with the Hamilton-Jacobi equation that governs the radial evolution of the classical gravity action in AdS.

Keywords

AdS-CFT Correspondence Conformal Field Theory Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \) -deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
  3. [3]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].
  4. [4]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  6. [6]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  12. [12]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  13. [13]
    J. Cardy, Quantum quenches to a critical point in one dimension: some further results, J. Stat. Mech. 02 (2016) 023103 [arXiv:1507.07266] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    D. Marolf and M. Rangamani, Causality and the AdS Dirichlet problem, JHEP 04 (2012) 035 [arXiv:1201.1233] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J.D. Brown, J. Creighton and R.B. Mann, Temperature, energy and heat capacity of asymptotically anti-de Sitter black holes, Phys. Rev. D 50 (1994) 6394 [gr-qc/9405007] [INSPIRE].
  19. [19]
    A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
  20. [20]
    H.L. Verlinde, Conformal field theory, 2D quantum gravity and quantization of Teichmüller space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].
  21. [21]
    L. Freidel, Reconstructing AdS/CFT, arXiv:0804.0632 [INSPIRE].
  22. [22]
    G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].
  23. [23]
    G. Mussardo and P. Simon, Bosonic type S matrix, vacuum instability and CDD ambiguities, Nucl. Phys. B 578 (2000) 527 [hep-th/9903072] [INSPIRE].
  24. [24]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].
  27. [27]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].
  28. [28]
    R.C. Brower, Spectrum generating algebra and no ghost theorem for the dual model, Phys. Rev. D 6 (1972) 1655 [INSPIRE].
  29. [29]
    J. Scherk, An introduction to the theory of dual models and strings, Rev. Mod. Phys. 47 (1975) 123 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev. D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].
  31. [31]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP 05 (2017) 065 [arXiv:1608.05101] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].
  37. [37]
    S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.Princeton Center for Theoretical SciencePrinceton UniversityPrincetonU.S.A.

Personalised recommendations