Divergences in open quantum systems

Open Access
Regular Article - Theoretical Physics


We show that for cubic scalar field theories in five and more spacetime dimensions, and for the T = 0 limit of the Caldeira-Leggett model, the quantum master equation for long-wavelength modes initially unentangled from short-distance modes, and at second order in perturbation theory, contains divergences in the non-Hamiltonian terms. These divergences ensure that the equations of motion for expectation values of composite operators closes on expectation values of renormalized operators. Along the way we show that initial “jolt” singularities which occur in the equations of motion for operators linear in the fundamental variables persist for quadratic operators, and are removed if one chooses an initial state projected onto low energies, following the Born-Oppenheimer approximation.


Effective Field Theories Quantum Dissipative Systems Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Agon, V. Balasubramanian, S. Kasko and A. Lawrence, Coarse Grained Quantum Dynamics, arXiv:1412.3148 [INSPIRE].
  2. [2]
    F. Lombardo and F.D. Mazzitelli, Coarse graining and decoherence in quantum field theory, Phys. Rev. D 53 (1996) 2001 [hep-th/9508052] [INSPIRE].
  3. [3]
    E.A. Calzetta, B.L. Hu and F.D. Mazzitelli, Coarse grained effective action and renormalization group theory in semiclassical gravity and cosmology, Phys. Rept. 352 (2001) 459 [hep-th/0102199] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    C.P. Burgess, R. Holman and D. Hoover, Decoherence of inflationary primordial fluctuations, Phys. Rev. D 77 (2008) 063534 [astro-ph/0601646] [INSPIRE].
  5. [5]
    S.V. Akkelin and Yu.M. Sinyukov, Entanglement of scales as a possible mechanism for decoherence and thermalization in relativistic heavy ion collisions, Phys. Rev. C 89 (2014) 034910 [arXiv:1309.4388] [INSPIRE].
  6. [6]
    C.P. Burgess, R. Holman, G. Tasinato and M. Williams, EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical, JHEP 03 (2015) 090 [arXiv:1408.5002] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    C.P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP 01 (2016) 153 [arXiv:1512.00169] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Neill, The Edge of Jets and Subleading Non-Global Logs, arXiv:1508.07568 [INSPIRE].
  9. [9]
    H. Mori and S. Ono, The quantum-statistical theory of transport phenomena, I — On the Boltzmann-Uehling-Uhlenbeck equation, Prog. Theor. Phys. 8 (1952) 327.ADSCrossRefMATHGoogle Scholar
  10. [10]
    H. Mori, The quantum-statistical theory of transport phenomena, II — On the theory of metallic conductivity, Prog. Theor. Phys. 9 (1953) 473.ADSCrossRefMATHGoogle Scholar
  11. [11]
    R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33 (1960) 1338.ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Zwanzig, Memory Effects in Irreversible Thermodynamics, Phys. Rev. 124 (1961) 983 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    R. Zwanzig, Nonequilibrium statistical mechanics, Oxford University Press, U.S.A. (2001).Google Scholar
  14. [14]
    S. Jeon and L.G. Yaffe, From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory, Phys. Rev. D 53 (1996) 5799 [hep-ph/9512263] [INSPIRE].
  15. [15]
    S. Jeon, Hydrodynamic transport coefficients in relativistic scalar field theory, Phys. Rev. D 52 (1995) 3591 [hep-ph/9409250] [INSPIRE].
  16. [16]
    E.A. Calzetta and B.L. Hu, Influence action and decoherence of hydrodynamic modes, Phys. Rev. D 59 (1999) 065018 [quant-ph/9809084] [INSPIRE].
  17. [17]
    D.A. Meyer, Scale decoherence in inhomogeneous potentials, quant-ph/9805039 [INSPIRE].
  18. [18]
    Y. Minami and Y. Hidaka, Relativistic hydrodynamics from the projection operator method, Phys. Rev. E 87 (2013) 023007 [arXiv:1210.1313] [INSPIRE].
  19. [19]
    V. Balasubramanian, M. Guica and A. Lawrence, Holographic Interpretations of the Renormalization Group, JHEP 01 (2013) 115 [arXiv:1211.1729] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    R.P. Feynman and F.L. Vernon Jr., The theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Baidya, C. Jana, R. Loganayagam and A. Rudra, Renormalization in open quantum field theory. Part I. Scalar field theory, JHEP 11 (2017) 204 [arXiv:1704.08335] [INSPIRE].
  22. [22]
    A. Kossakowski, On quantum statistical mechanics of non-hamiltonian systems, Rept. Math. Phys. 3 (1972) 247.ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Caldeira and A. Leggett, Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587.Google Scholar
  25. [25]
    J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].
  26. [26]
    M. Rosenau da Costa, A.O. Caldeira, S.M. Dutra and H. Westfahl Jr., Study of some properties of dissipative models through exact diagonalization, Phys. Rev. A 61 (2000) 022107 [quant-ph/9903022] [INSPIRE].
  27. [27]
    H. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford (2007)Google Scholar
  28. [28]
    S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.R. Das, D.A. Galante and R.C. Myers, Universality in fast quantum quenches, JHEP 02 (2015) 167 [arXiv:1411.7710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Das, S.R. Das, D.A. Galante, R.C. Myers and K. Sengupta, An exactly solvable quench protocol for integrable spin models, JHEP 11 (2017) 157 [arXiv:1706.02322] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    T. Grover and M.P.A. Fisher, Quantum Disentangled Liquids, J. Stat. Mech. 1410 (2014) P10010 [arXiv:1307.2288] [INSPIRE].
  32. [32]
    H.-P. Breuer, Foundations and measures of quantum non-markovianity, J. Phys. B 45 (2012) 154001.Google Scholar
  33. [33]
    Á. Rivas, S.F. Huelga and M.B. Plenio, Quantum non-Markovianity: characterization, quantification and detection Rept. Prog. Phys. 77 (2014) 094001 [arXiv:1405.0303].
  34. [34]
    L. D’Alessio and A. Polkovnikov, Emergent Newtonian dynamics and the geometric origin of mass, Annals Phys. 345 (2014) 141 [arXiv:1309.6354] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    L. D’Alessio, Y. Kafri and A. Polkovnikov, Negative mass corrections in a dissipative stochastic environment, arXiv:1405.2077.
  36. [36]
    N. Kaloper, M. Kleban, A. Lawrence, S. Shenker and L. Susskind, Initial conditions for inflation, JHEP 11 (2002) 037 [hep-th/0209231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    K. Symanzik, Regularized Quantum Field Theory, in Cargese Summer Institute: New Developments in Quantum Field Theory and Statistical Mechanics, Cargese, France, July 12-31 1976, pp. 265-279.Google Scholar
  38. [38]
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, Dover Publications (1965).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Martin Fisher School of PhysicsBrandeis UniversityWalthamU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.C.N. Yang Institute for Theoretical PhysicsState University of New YorkStony BrookU.S.A.

Personalised recommendations