U(1) symmetric α-attractors

Open Access
Regular Article - Theoretical Physics

Abstract

We present a class of supergravity α-attractors with an approximate global U(1) symmetry corresponding to the axion direction. We also develop a multi-field generalization of these models and show that the α-attractor models with U(1) symmetries have a dual description in terms of a two-form superfield coupled to a three-form superfield.

Keywords

Cosmology of Theories beyond the SM Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Kallosh, A. Linde and D. Roest, Superconformal Inflationary α-Attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  3. [3]
    R. Kallosh and A. Linde, Escher in the Sky, Comptes Rendus Physique 16 (2015) 914 [arXiv:1503.06785] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological attractors, Phys. Rev. D 92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].
  5. [5]
    S. Ferrara and R. Kallosh, Seven-disk manifold, α-attractors and B modes, Phys. Rev. D 94 (2016) 126015 [arXiv:1610.04163] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Kallosh, A. Linde, T. Wrase and Y. Yamada, Maximal Supersymmetry and B-Mode Targets, JHEP 04 (2017) 144 [arXiv:1704.04829] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Achúcarro, R. Kallosh, A. Linde, D.-G. Wang and Y. Welling, Universality of multi-field α-attractors, arXiv:1711.09478 [INSPIRE].
  8. [8]
    N. Kaloper and L. Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Dudas, Three-form multiplet and Inflation, JHEP 12 (2014) 014 [arXiv:1407.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].
  12. [12]
    G. Lopes Cardoso and B.A. Ovrut, A Green-Schwarz mechanism for D = 4, N = 1 supergravity anomalies, Nucl. Phys. B 369 (1992) 351 [INSPIRE].
  13. [13]
    E. McDonough and M. Scalisi, Inflation from Nilpotent Kähler Corrections, JCAP 11 (2016) 028 [arXiv:1609.00364] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Kallosh, A. Linde, D. Roest and Y. Yamada, \( \overline{D3} \) induced geometric inflation, JHEP 07 (2017) 057 [arXiv:1705.09247] [INSPIRE].
  15. [15]
    M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].
  17. [17]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].
  18. [18]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: Exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].
  20. [20]
    R. Kallosh, A. Linde, D. Roest, A. Westphal and Y. Yamada, Fibre Inflation and α-attractors, JHEP 02 (2018) 117 [arXiv:1707.05830] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Hasegawa, K. Nakayama, T. Terada and Y. Yamada, Gravitino problem in inflation driven by inflaton-polonyi Kähler coupling, Phys. Lett. B 777 (2018) 270 [arXiv:1709.01246] [INSPIRE].
  22. [22]
    C.P. Burgess, J.P. Derendinger, F. Quevedo and M. Quirós, Gaugino condensates and chiral linear duality: An Effective Lagrangian analysis, Phys. Lett. B 348 (1995) 428 [hep-th/9501065] [INSPIRE].
  23. [23]
    C.P. Burgess, J.P. Derendinger, F. Quevedo and M. Quirós, On gaugino condensation with field dependent gauge couplings, Annals Phys. 250 (1996) 193 [hep-th/9505171] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    P. Binetruy, M.K. Gaillard and T.R. Taylor, Dynamical supersymmetric breaking and the linear multiplet, Nucl. Phys. B 455 (1995) 97 [hep-th/9504143] [INSPIRE].
  25. [25]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of Conformal Supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    M. Kaku and P.K. Townsend, Poincaré Supergravity As Broken Superconformal Gravity, Phys. Lett. B 76 (1978) 54 [INSPIRE].
  27. [27]
    P.K. Townsend and P. van Nieuwenhuizen, Simplifications of Conformal Supergravity, Phys. Rev. D 19 (1979) 3166 [INSPIRE].
  28. [28]
    T. Kugo and S. Uehara, Conformal and Poincaré Tensor Calculi in N = 1 Supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].
  29. [29]
    T. Kugo and S. Uehara, N = 1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].
  30. [30]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press (2012).Google Scholar
  31. [31]
    S.J. Gates Jr., Super P Form Gauge Superfields, Nucl. Phys. B 184 (1981) 381 [INSPIRE].
  32. [32]
    P. Binetruy, F. Pillon, G. Girardi and R. Grimm, The Three form multiplet in supergravity, Nucl. Phys. B 477 (1996) 175 [hep-th/9603181] [INSPIRE].
  33. [33]
    B.A. Ovrut and D. Waldram, Membranes and three form supergravity, Nucl. Phys. B 506 (1997) 236 [hep-th/9704045] [INSPIRE].
  34. [34]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: A geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    K. Groh, J. Louis and J. Sommerfeld, Duality and Couplings of 3-Form-Multiplets in N = 1 Supersymmetry, JHEP 05 (2013) 001 [arXiv:1212.4639] [INSPIRE].
  36. [36]
    K. Becker, M. Becker, W.D. Linch and D. Robbins, Abelian tensor hierarchy in 4D, N = 1 superspace, JHEP 03 (2016) 052 [arXiv:1601.03066] [INSPIRE].
  37. [37]
    K. Becker, M. Becker, W.D. Linch and D. Robbins, Chern-Simons actions and their gaugings in 4D, N = 1 superspace, JHEP 06 (2016) 097 [arXiv:1603.07362] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Aoki, T. Higaki, Y. Yamada and R. Yokokura, Abelian tensor hierarchy in 4D \( \mathcal{N}=1 \) conformal supergravity, JHEP 09 (2016) 148 [arXiv:1606.04448] [INSPIRE].
  39. [39]
    R. Yokokura, Abelian tensor hierarchy and Chern-Simons actions in 4D \( \mathcal{N}=1 \) conformal supergravity, JHEP 12 (2016) 092 [arXiv:1609.01111] [INSPIRE].
  40. [40]
    K. Becker, M. Becker, W.D. Linch III, S. Randall and D. Robbins, All Chern-Simons Invariants of 4D, N = 1 Gauged Superform Hierarchies, JHEP 04 (2017) 103 [arXiv:1702.00799] [INSPIRE].
  41. [41]
    K. Becker, M. Becker, D. Butter, S. Guha, W.D. Linch and D. Robbins, Eleven-dimensional supergravity in 4D, N = 1 superspace, JHEP 11 (2017) 199 [arXiv:1709.07024] [INSPIRE].
  42. [42]
    F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms in Supergravity and Flux Compactifications, Eur. Phys. J. C 77 (2017) 602 [arXiv:1706.09422] [INSPIRE].
  43. [43]
    Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096 [arXiv:1612.05492] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Linde and Y. Yamada, work in progress.Google Scholar
  45. [45]
    E.V. Linder, Dark Energy from α-Attractors, Phys. Rev. D 91 (2015) 123012 [arXiv:1505.00815] [INSPIRE].
  46. [46]
    K. Dimopoulos and C. Owen, Quintessential Inflation with α-attractors, JCAP 06 (2017) 027 [arXiv:1703.00305] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S.S. Mishra, V. Sahni and Y. Shtanov, Sourcing Dark Matter and Dark Energy from α-attractors, JCAP 06 (2017) 045 [arXiv:1703.03295] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Dimopoulos and C. Owen, Instant Preheating in Quintessential Inflation with α-Attractors, Phys. Rev. D 97 (2018) 063525 [arXiv:1712.01760] [INSPIRE].
  49. [49]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, Dark energy, α-attractors and large-scale structure surveys, arXiv:1712.09693 [INSPIRE].
  50. [50]
    A.R. Brown, Hyperinflation, arXiv:1705.03023 [INSPIRE].
  51. [51]
    S. Mizuno and S. Mukohyama, Primordial perturbations from inflation with a hyperbolic field-space, Phys. Rev. D 96 (2017) 103533 [arXiv:1707.05125] [INSPIRE].
  52. [52]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations