Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

UV and IR effects in axion quality control

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 08 March 2024
  • Volume 2024, article number 51, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
UV and IR effects in axion quality control
Download PDF
  • C. P. Burgess1,2,
  • Gongjun Choi  ORCID: orcid.org/0000-0001-8515-55863 &
  • F. Quevedo4 
  • 278 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Motivated by recent discussions and the absence of exact global symmetries in UV completions of gravity we re-examine the axion quality problem (and naturalness issues more generally) using antisymmetric Kalb-Ramond (KR) fields rather than their pseudoscalar duals, as suggested by string and higher dimensional theories. Two types of axions can be identified: a model independent S-type axion dual to a two form Bμν in 4D and a T-type axion coming directly as 4D scalar Kaluza-Klein (KK) components of higher-dimensional tensor fields. For T-type axions our conclusions largely agree with earlier workers for the axion quality problem, but we also reconcile why T-type axions can couple to matter localized on 3-branes with Planck suppressed strength even when the axion decay constants are of order the KK scale. For S-type axions, we review the duality between form fields and massive scalars and show how duality impacts naturalness arguments about the UV sensitivity of the scalar potential. In particular UV contributions on the KR side suppress contributions on the scalar side by powers of m/M with m the axion mass and M the UV scale. We re-examine how the axion quality problem is formulated on the dual side and compare to recent treatments. We study how axion quality is affected by the ubiquity of p-form gauge potentials (for both p = 2 and p = 3) in string vacua and identify two criteria that can potentially lead to a problem. We also show why most fields do not satisfy these criteria, but when they do the existence of multiple fields also provides mechanisms for resolving it. We conclude that the quality problem is easily evaded.

Article PDF

Download to read the full article text

Similar content being viewed by others

Axion quality straight from the GUT

Article Open access 23 October 2021

High quality axion in supersymmetric models

Article Open access 13 December 2022

Axion periodicity and coupling quantization in the presence of mixing

Article Open access 13 May 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  2. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

  3. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S.M. Barr, Harmless Axions in Superstring Theories, Phys. Lett. B 158 (1985) 397 [INSPIRE].

    Article  ADS  Google Scholar 

  7. K. Choi and J.E. Kim, Harmful Axions in Superstring Models, Phys. Lett. B 154 (1985) 393 [Erratum ibid. 156 (1985) 452] [INSPIRE].

  8. P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Arvanitaki et al., String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

  11. M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  14. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

  16. D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 (2021) 1669 [arXiv:1810.05338] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. C.P. Burgess et al., Continuous Global Symmetries and Hyperweak Interactions in String Compactifications, JHEP 07 (2008) 073 [arXiv:0805.4037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].

  20. S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278 [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

  22. M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9 (1974) 2273 [INSPIRE].

  23. R. Savit, Duality in Field Theory and Statistical Systems, Rev. Mod. Phys. 52 (1980) 453 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

  26. O. Sakhelashvili, Consistency of the dual formulation of axion solutions to the strong CP problem, Phys. Rev. D 105 (2022) 085020 [arXiv:2110.03386] [INSPIRE].

  27. G. Dvali, Strong-CP with and without gravity, arXiv:2209.14219 [INSPIRE].

  28. C.P. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics, in the proceedings of the 100e Ecole d’Ete de Physique: Post-Planck Cosmology, Les Houches, France, July 08 – August 02 (2013) [https://doi.org/10.1093/acprof:oso/9780198728856.003.0004] [arXiv:1309.4133] [INSPIRE].

  29. N. Kaloper and L. Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].

  30. N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C.P. Burgess, D. Dineen and F. Quevedo, Yoga Dark Energy: natural relaxation and other dark implications of a supersymmetric gravity sector, JCAP 03 (2022) 064 [arXiv:2111.07286] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Weinberg, Why the renormalization group is a good thing [INSPIRE].

  33. D. Tong, Lectures on the Quantum Hall Effect, arXiv:1606.06687 [INSPIRE].

  34. E. Witten, Two Lectures on Gauge Theory and Khovanov Homology, arXiv:1603.03854 [INSPIRE].

  35. C.P. Burgess, Introduction to Effective Field Theory, Cambridge University Press (2020) [https://doi.org/10.1017/9781139048040] [INSPIRE].

  36. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. C.P. Burgess, R. Diener and M. Williams, Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture, JHEP 10 (2015) 177 [arXiv:1509.04209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Bielleman, L.E. Ibanez and I. Valenzuela, Minkowski 3-forms, Flux String Vacua, Axion Stability and Naturalness, JHEP 12 (2015) 119 [arXiv:1507.06793] [INSPIRE].

  39. A. Herraez, L.E. Ibanez, F. Marchesano and G. Zoccarato, The Type IIA Flux Potential, 4-forms and Freed-Witten anomalies, JHEP 09 (2018) 018 [arXiv:1802.05771] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. F. Quevedo and C.A. Trugenberger, Phases of antisymmetric tensor field theories, Nucl. Phys. B 501 (1997) 143 [hep-th/9604196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. F. Quevedo and C.A. Trugenberger, Condensation of p-branes and generalized Higgs / confinement duality, Int. J. Mod. Phys. A 12 (1997) 1227 [hep-th/9608171] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. C.P. Burgess and F. Quevedo, Who’s Afraid of the Supersymmetric Dark? The Standard Model vs Low-Energy Supergravity, Fortsch. Phys. 70 (2022) 2200077 [arXiv:2110.13275] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  43. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6-D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: An Update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. C.P. Burgess, Towards a natural theory of dark energy: Supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2004) 417 [hep-th/0411140] [INSPIRE].

    Article  ADS  Google Scholar 

  46. C.P. Burgess and L. van Nierop, Technically Natural Cosmological Constant From Supersymmetric 6D Brane Backreaction, Phys. Dark Univ. 2 (2013) 1 [arXiv:1108.0345] [INSPIRE].

    Article  Google Scholar 

  47. C.P. Burgess, R. Diener and M. Williams, EFT for Vortices with Dilaton-dependent Localized Flux, JHEP 11 (2015) 054 [arXiv:1508.00856] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. C.P. Burgess, R. Diener and M. Williams, A problem with δ-functions: stress-energy constraints on bulk-brane matching (with comments on arXiv:1508.01124), JHEP 01 (2016) 017 [arXiv:1509.04201] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. F. Niedermann and R. Schneider, Fine-tuning with Brane-Localized Flux in 6D Supergravity, JHEP 02 (2016) 025 [arXiv:1508.01124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. B. Julia and G. Toulouse, The many-defect problem: gauge-like variables for ordered media containing defects, J. Phys. Lett. 40 (1979) 395.

    Article  Google Scholar 

  52. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [INSPIRE].

  53. V.L. Berezinsky, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems, Sov. Phys. JETP 34 (1972) 610 [INSPIRE].

    ADS  Google Scholar 

  54. J. Villain, Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet, J. Phys. (France) 36 (1975) 581.

    Article  Google Scholar 

  55. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  56. M. Luscher, The Secret Long Range Force in Quantum Field Theories With Instantons, Phys. Lett. B 78 (1978) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  57. R. Holman, T.W. Kephart and S.-J. Rey, Semiclassical gravity and invisible axions, Phys. Rev. Lett. 71 (1993) 320 [hep-ph/9207208] [INSPIRE].

  58. G.W. Gibbons and S.W. Hawking, Gravitational Multi-Instantons, Phys. Lett. B 78 (1978) 430 [INSPIRE].

  59. T. Eguchi and A.J. Hanson, Selfdual Solutions to Euclidean Gravity, Annals Phys. 120 (1979) 82 [INSPIRE].

  60. S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and String Theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004 [arXiv:1812.02669] [INSPIRE].

  62. B. Heidenreich et al., Chern-Weil global symmetries and how quantum gravity avoids them, JHEP 11 (2021) 053 [arXiv:2012.00009] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. H. Nishino and E. Sezgin, The Complete N = 2, d = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A.H. Chamseddine, Interacting Supergravity in Ten-Dimensions: The role of the Six-Index Gauge Field, Phys. Rev. D 24 (1981) 3065 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-Dimensional Maxwell-Einstein Supergravity, Its Currents, and the Issue of Its Auxiliary Fields, Nucl. Phys. B 195 (1982) 97 [INSPIRE].

  67. G.F. Chapline and N.S. Manton, Unification of Yang-Mills Theory and Supergravity in Ten-Dimensions, Phys. Lett. B 120 (1983) 105 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. J.H. Schwarz, Covariant Field Equations of Chiral N = 2D = 10 Supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  69. Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific (Singapore) (1989) [https://doi.org/10.1142/0277].

  70. G. Choi and J. Leedom, Implications of protecting the QCD axion in the dual description, JHEP 09 (2023) 175 [arXiv:2307.08733] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

We thank Philippe Brax and Junwu Huang for helpful conversations. CB’s research was partially supported by funds from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Research at the Perimeter Institute is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI. The work of FQ has been partially supported by STFC consolidated grants ST/P000681/1, ST/T000694/1.

Author information

Authors and Affiliations

  1. Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, Canada

    C. P. Burgess

  2. Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, Canada

    C. P. Burgess

  3. CERN, Theoretical Physics Department, Genève 23, Switzerland

    Gongjun Choi

  4. DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

    F. Quevedo

Authors
  1. C. P. Burgess
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gongjun Choi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. F. Quevedo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gongjun Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2301.00549

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgess, C.P., Choi, G. & Quevedo, F. UV and IR effects in axion quality control. J. High Energ. Phys. 2024, 51 (2024). https://doi.org/10.1007/JHEP03(2024)051

Download citation

  • Received: 12 January 2024

  • Accepted: 18 February 2024

  • Published: 08 March 2024

  • DOI: https://doi.org/10.1007/JHEP03(2024)051

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Axions and ALPs
  • Gauge Symmetry
  • Global Symmetries
  • Higher Spin Symmetry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature