Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Probing RG flows, symmetry resolution and quench dynamics through the capacity of entanglement

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 March 2023
  • Volume 2023, article number 175, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Probing RG flows, symmetry resolution and quench dynamics through the capacity of entanglement
Download PDF
  • Raúl Arias1,2,
  • Giuseppe Di Giulio  ORCID: orcid.org/0000-0003-4350-87553,
  • Esko Keski-Vakkuri4,5 &
  • …
  • Erik Tonni6 
  • 211 Accesses

  • 4 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We compare the capacity of entanglement with the entanglement entropy by considering various aspects of these quantities for free bosonic and fermionic models in one spatial dimension, both in the continuum and on the lattice. Substantial differences are observed in the subleading terms of these entanglement quantifiers when the subsystem is made by two disjoint intervals, in the massive scalar field and in the fermionic chain. We define c-functions based on the capacity of entanglement similar to the one based on the entanglement entropy, showing through a numerical analysis that they display a monotonic behaviour under the renormalisation group flow generated by the mass. The capacity of entanglement and its related quantities are employed to explore the symmetry resolution. The temporal evolutions of the capacity of entanglement and of the corresponding contour function after a global quench are also discussed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Entanglement asymmetry as a probe of symmetry breaking

Article Open access 11 April 2023

Entanglement and correlations in the continuous multi-scale entanglement renormalization ansatz

Article Open access 22 December 2017

Entanglement wedge cross section from CFT: dynamics of local operator quench

Article Open access 04 February 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. Yao and X.-L. Qi, Entanglement entropy and entanglement spectrum of the Kitaev model, Phys. Rev. Lett. 105 (2010) 080501 [arXiv:1001.1165] [INSPIRE].

  2. J. Schliemann, Entanglement spectrum and entanglement thermodynamics of quantum Hall bilayers at ν = 1, Phys. Rev. B 83 (2011) 115322 [arXiv:1008.5289].

  3. E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117 [arXiv:1308.1083] [INSPIRE].

    ADS  MATH  Google Scholar 

  4. J. De Boer, J. Järvelä and E. Keski-Vakkuri, Aspects of capacity of entanglement, Phys. Rev. D 99 (2019) 066012 [arXiv:1807.07357] [INSPIRE].

  5. Y. Nakaguchi and T. Nishioka, A holographic proof of Rényi entropic inequalities, JHEP 12 (2016) 129 [arXiv:1606.08443] [INSPIRE].

    ADS  MATH  Google Scholar 

  6. D. Reeb and M.M. Wolf, An improved landauer principle with finite-size corrections, New J. Phys. 16 (2014) 103011.

  7. P. Boes, N.H.Y. Ng and H. Wilming, Variance of Relative Surprisal as Single-Shot Quantifier, PRX Quantum 3 (2022) 010325 [INSPIRE].

  8. C.T. Chubb, M. Tomamichel and K. Korzekwa, Beyond the thermodynamic limit: finite-size corrections to state interconversion rates, Quantum 2 (2018) 108 [arXiv:1711.01193].

    Google Scholar 

  9. E. Verlinde and K.M. Zurek, Spacetime Fluctuations in AdS/CFT, JHEP 04 (2020) 209 [arXiv:1911.02018] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. R. Arias, M. Botta-Cantcheff, P.J. Martinez and J.F. Zarate, Modular Hamiltonian for holographic excited states, Phys. Rev. D 102 (2020) 026021 [arXiv:2002.04637] [INSPIRE].

  11. J. de Boer, V. Godet, J. Kastikainen and E. Keski-Vakkuri, Quantum hypothesis testing in many-body systems, SciPost Phys. Core 4 (2021) 019 [arXiv:2007.11711] [INSPIRE].

    Google Scholar 

  12. K.M. Zurek, On vacuum fluctuations in quantum gravity and interferometer arm fluctuations, Phys. Lett. B 826 (2022) 136910 [arXiv:2012.05870] [INSPIRE].

  13. K. Kawabata, T. Nishioka, Y. Okuyama and K. Watanabe, Probing Hawking radiation through capacity of entanglement, JHEP 05 (2021) 062 [arXiv:2102.02425] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. K. Okuyama, Capacity of entanglement in random pure state, Phys. Lett. B 820 (2021) 136600 [arXiv:2103.08909] [INSPIRE].

  15. K. Kawabata, T. Nishioka, Y. Okuyama and K. Watanabe, Replica wormholes and capacity of entanglement, JHEP 10 (2021) 227 [arXiv:2105.08396] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. S. Iso, T. Mori and K. Sakai, Wilsonian Effective Action and Entanglement Entropy, Symmetry 13 (2021) 1221 [arXiv:2105.14834] [INSPIRE].

    ADS  Google Scholar 

  17. P. Nandy, Capacity of entanglement in local operators, JHEP 07 (2021) 019 [arXiv:2106.00228] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. H.L. Prihadi, F.P. Zen and D. Dwiputra, Fluctuations and non-Gaussianity in de Sitter spacetime from holographic entanglement entropy, arXiv:2106.15174 [INSPIRE].

  19. T. Banks and K.M. Zurek, Conformal description of near-horizon vacuum states, Phys. Rev. D 104 (2021) 126026 [arXiv:2108.04806] [INSPIRE].

  20. B. Bhattacharjee, P. Nandy and T. Pathak, Eigenstate capacity and Page curve in fermionic Gaussian states, Phys. Rev. B 104 (2021) 214306 [arXiv:2109.00557] [INSPIRE].

  21. P. Caputa, J.M. Magan and D. Patramanis, Geometry of Krylov complexity, Phys. Rev. Res. 4 (2022) 013041 [arXiv:2109.03824] [INSPIRE].

  22. C. Boudreault, C. Berthiere and W. Witczak-Krempa, Entanglement and separability in continuum Rokhsar-Kivelson states, Phys. Rev. Res. 4 (2022) 033251 [arXiv:2110.04290] [INSPIRE].

  23. D. Patramanis, Probing the entanglement of operator growth, PTEP 2022 (2022) 063A01 [arXiv:2111.03424] [INSPIRE].

  24. Y. Huang and L. Wei, Second-order statistics of fermionic Gaussian states, J. Phys. A 55 (2022) 105201 [arXiv:2111.08216] [INSPIRE].

  25. K. Allameh, A.F. Astaneh and A. Hassanzadeh, Aspects of holographic entanglement entropy for \( T\overline{T} \)-deformed CFTs, Phys. Lett. B 826 (2022) 136914 [arXiv:2111.11338] [INSPIRE].

  26. E. Bianchi, L. Hackl, M. Kieburg, M. Rigol and L. Vidmar, Volume-Law Entanglement Entropy of Typical Pure Quantum States, PRX Quantum 3 (2022) 030201 [arXiv:2112.06959] [INSPIRE].

  27. M. Mintchev, D. Pontello, A. Sartori and E. Tonni, Entanglement entropies of an interval in the free Schrödinger field theory at finite density, JHEP 07 (2022) 120 [arXiv:2201.04522] [INSPIRE].

    ADS  MATH  Google Scholar 

  28. D.E. Sommer and S.T. Dunham, Entangling Solid Solutions: Machine Learning of Tensor Networks for Materials Property Prediction, arXiv:2203.09613 [INSPIRE].

  29. K.M. Zurek, Snowmass 2021 White Paper: Observational Signatures of Quantum Gravity, arXiv:2205.01799 [INSPIRE].

  30. S. Gukov, V.S.H. Lee and K.M. Zurek, Near-horizon quantum dynamics of 4D Einstein gravity from 2D Jackiw-Teitelboim gravity, Phys. Rev. D 107 (2023) 016004 [arXiv:2205.02233] [INSPIRE].

  31. L. Wei, Average capacity of quantum entanglement, J. Phys. A 56 (2023) 015302 [arXiv:2205.06343] [INSPIRE].

  32. G. Chiriacò, M. Dalmonte and T. Chanda, Critical light-matter entanglement at cavity mediated phase transitions, Phys. Rev. B 106 (2022) 155113 [arXiv:2207.06444] [INSPIRE].

  33. D. Shrimali, S. Bhowmick, V. Pandey and A.K. Pati, Capacity of entanglement for a nonlocal Hamiltonian, Phys. Rev. A 106 (2022) 042419 [arXiv:2207.11459] [INSPIRE].

  34. E. Bianchi, L. Hackl, M. Kieburg, M. Rigol and L. Vidmar, Volume-Law Entanglement Entropy of Typical Pure Quantum States, PRX Quantum 3 (2022) 030201 [arXiv:2112.06959] [INSPIRE].

  35. E. Verlinde and K.M. Zurek, Modular fluctuations from shockwave geometries, Phys. Rev. D 106 (2022) 106011 [arXiv:2208.01059] [INSPIRE].

  36. D. Li, V.S.H. Lee, Y. Chen and K.M. Zurek, Interferometer response to geontropic fluctuations, Phys. Rev. D 107 (2023) 024002 [arXiv:2209.07543] [INSPIRE].

  37. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

  38. X. Dong, The Gravity Dual of Renyi Entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].

    ADS  Google Scholar 

  39. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

  40. V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proc. Natl. Acad. Sci. 114 (2017) 7947.

    ADS  MathSciNet  MATH  Google Scholar 

  41. A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum quench, J. Stat. Mech. 1412 (2014) P12017 [arXiv:1410.0900] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  42. A. Botero and B. Reznik, Spatial structures and localization of vacuum entanglement in the linear harmonic chain, Phys. Rev. A 70 (2004) 052329 [quant-ph/0403233].

  43. Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech. 2014 (2014) P10011.

  44. I. Frérot and T. Roscilde, Area law and its violation: A microscopic inspection into the structure of entanglement and fluctuations, Phys. Rev. B 92 (2015) 115129 [arXiv:1506.00545].

  45. A. Coser, C. De Nobili and E. Tonni, A contour for the entanglement entropies in harmonic lattices, J. Phys. A 50 (2017) 314001 [arXiv:1701.08427] [INSPIRE].

  46. H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].

  47. H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

  49. T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys. 90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].

  50. H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].

  51. H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech. 0512 (2005) P12012 [cond-mat/0511014] [INSPIRE].

  52. J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains, Quant. Inf. Comput. 4 (2004) 48 [quant-ph/0304098] [INSPIRE].

  53. R. Orus, Entanglement and majorization in (1 + 1)-dimensional quantum systems, Phys. Rev. A 71 (2005) 052327 [quant-ph/0501110] [Erratum ibid. 73 (2006) 019904] [INSPIRE].

  54. A. Riera and J.I. Latorre, Area law and vacuum reordering in harmonic networks, Phys. Rev. A 74 (2006) 052326 [quant-ph/0605112] [INSPIRE].

  55. R. Arias, J. de Boer, G. Di Giulio, E. Keski-Vakkuri and E. Tonni, Sequences of resource monotones from modular Hamiltonian polynomials, arXiv:2301.01053 [INSPIRE].

  56. I. Bengtsson and K. Życzkowski, Geometry of quantum states: an introduction to quantum entanglement, Cambridge University Press (2017).

  57. A. Lukin et al., Probing entanglement in a many-body-localized system, Science 364 (2019) 256 [arXiv:1805.09819].

    ADS  Google Scholar 

  58. V. Vitale et al., Symmetry-resolved dynamical purification in synthetic quantum matter, SciPost Phys. 12 (2022) 106 [arXiv:2101.07814] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. A. Neven et al., Symmetry-resolved entanglement detection using partial transpose moments, npj Quantum Inf. 7 (2021) 152 [arXiv:2103.07443] [INSPIRE].

  60. M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120 (2018) 200602 [arXiv:1711.09418] [INSPIRE].

  61. J.C. Xavier, F.C. Alcaraz and G. Sierra, Equipartition of the entanglement entropy, Phys. Rev. B 98 (2018) 041106 [arXiv:1804.06357] [INSPIRE].

  62. N. Laflorencie and S. Rachel, Spin-resolved entanglement spectroscopy of critical spin chains and luttinger liquids, J. Stat. Mech. 2014 (2014) P11013.

  63. R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free fermionic systems, J. Phys. A 52 (2019) 475302 [arXiv:1907.02084] [INSPIRE].

  64. S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: Exact results in 1D and beyond, J. Stat. Mech. 2003 (2020) 033106 [arXiv:1910.08459] [INSPIRE].

  65. S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach, SciPost Phys. 8 (2020) 046 [arXiv:1911.09588] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. G. Parez, R. Bonsignori and P. Calabrese, Quasiparticle dynamics of symmetry-resolved entanglement after a quench: Examples of conformal field theories and free fermions, Phys. Rev. B 103 (2021) L041104 [arXiv:2010.09794] [INSPIRE].

    ADS  MATH  Google Scholar 

  67. D. Azses, E.G. Dalla Torre and E. Sela, Observing Floquet topological order by symmetry resolution, Phys. Rev. B 104 (2021) L220301 [arXiv:2109.01151] [INSPIRE].

  68. S. Murciano, P. Calabrese and L. Piroli, Symmetry-resolved Page curves, Phys. Rev. D 106 (2022) 046015 [arXiv:2206.05083] [INSPIRE].

  69. L. Piroli, E. Vernier, M. Collura and P. Calabrese, Thermodynamic symmetry resolved entanglement entropies in integrable systems, arXiv:2203.09158 [INSPIRE].

  70. S. Murciano, G. Di Giulio and P. Calabrese, Entanglement and symmetry resolution in two dimensional free quantum field theories, JHEP 08 (2020) 073 [arXiv:2006.09069] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  71. D.X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field theories via form factor bootstrap, JHEP 11 (2020) 131 [arXiv:2008.08553] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. P. Calabrese, J. Dubail and S. Murciano, Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models, JHEP 10 (2021) 067 [arXiv:2106.15946] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS3/CFT2 coupled to U(1) Chern-Simons theory, JHEP 07 (2021) 030 [arXiv:2012.11274] [INSPIRE].

    ADS  MATH  Google Scholar 

  74. C.G. Callan, Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  76. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  77. J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].

  78. M. Caraglio and F. Gliozzi, Entanglement Entropy and Twist Fields, JHEP 11 (2008) 076 [arXiv:0808.4094] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  79. S. Furukawa, V. Pasquier and J. Shiraishi, Mutual Information and Compactification Radius in a c = 1 Critical Phase in One Dimension, Phys. Rev. Lett. 102 (2009) 170602 [arXiv:0809.5113] [INSPIRE].

  80. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  81. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  82. A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech. 1401 (2014) P01008 [arXiv:1309.2189] [INSPIRE].

    MATH  Google Scholar 

  83. T. Grava, A.P. Kels and E. Tonni, Entanglement of Two Disjoint Intervals in Conformal Field Theory and the 2D Coulomb Gas on a Lattice, Phys. Rev. Lett. 127 (2021) 141605 [arXiv:2104.06994] [INSPIRE].

  84. C.A. Agon, M. Headrick, D.L. Jafferis and S. Kasko, Disk entanglement entropy for a Maxwell field, Phys. Rev. D 89 (2014) 025018 [arXiv:1310.4886] [INSPIRE].

  85. C. De Nobili, A. Coser and E. Tonni, Entanglement entropy and negativity of disjoint intervals in CFT: Some numerical extrapolations, J. Stat. Mech. 1506 (2015) P06021 [arXiv:1501.04311] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  86. B.-Q. Jin and V.E. Korepin, Quantum Spin Chain, Toeplitz Determinants and the Fisher-Hartwig Conjecture, J. Stat. Phys. 116 (2004) 79.

    ADS  MathSciNet  MATH  Google Scholar 

  87. P. Calabrese, M. Campostrini, F. Essler and B. Nienhuis, Parity effects in the scaling of block entanglement in gapless spin chains, Phys. Rev. Lett. 104 (2010) 095701 [arXiv:0911.4660] [INSPIRE].

  88. P. Calabrese and F.H.L. Essler, Universal corrections to scaling for block entanglement in spin-1/2 XX chains, J. Stat. Mech. 2010 (2010) P08029.

  89. M. Mintchev, D. Pontello and E. Tonni, Entanglement entropies of an interval in the free Schrödinger field theory on the half line, JHEP 09 (2022) 090 [arXiv:2206.06187] [INSPIRE].

    ADS  MATH  Google Scholar 

  90. I. Peschel, M. Kaulke and Ö. Legeza, Density-matrix spectra for integrable models, Ann. Phys. 8 (1999) 153 [cond-mat/9810174].

  91. H. Itoyama and H.B. Thacker, Lattice Virasoro Algebra and Corner Transfer Matrices in the Baxter Eight Vertex Model, Phys. Rev. Lett. 58 (1987) 1395 [INSPIRE].

  92. T. Nishino, Density Matrix Renormalization Group Method for 2D Classical Models, J. Phys. Soc. Jpn. 64 (1995) 3598.

    ADS  MATH  Google Scholar 

  93. T. Nishino and K. Okunishi, Density matrix and renormalization for classical lattice models, Lect. Notes Phys. 478 (1997) 167.

    ADS  MATH  Google Scholar 

  94. I. Peschel and T.T. Truong, Corner transfer matrices for the gaussian model, Ann. Phys. 503 (1991) 185.

    Google Scholar 

  95. I. Peschel and M.-C. Chung, Density matrices for a chain of oscillators, J. Phys. A 32 (1999) 8419.

    ADS  MathSciNet  MATH  Google Scholar 

  96. P. Calabrese, J. Cardy and I. Peschel, Corrections to scaling for block entanglement in massive spin-chains, J. Stat. Mech. 1009 (2010) P09003 [arXiv:1007.0881] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  97. V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy formula in 1 + 1 dimensional conformal field theories, J. Phys. A 51 (2018) 024001 [arXiv:1707.07532] [INSPIRE].

  98. I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A 42 (2009) 504003.

  99. P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field theories, J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

  100. F.H.L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, J. Stat. Mech. 1606 (2016) 064002 [arXiv:1603.06452] [INSPIRE].

  101. M. Fagotti and F.H.L. Essler, Reduced density matrix after a quantum quench, Phys. Rev. B 87 (2013) 245107 [arXiv:1302.6944].

  102. X. Wen, S. Ryu and A.W.W. Ludwig, Entanglement hamiltonian evolution during thermalization in conformal field theory, J. Stat. Mech. 1811 (2018) 113103 [arXiv:1807.04440] [INSPIRE].

  103. G. Di Giulio, R. Arias and E. Tonni, Entanglement hamiltonians in 1D free lattice models after a global quantum quench, J. Stat. Mech. 1912 (2019) 123103 [arXiv:1905.01144] [INSPIRE].

  104. G. Torlai, L. Tagliacozzo and G.D. Chiara, Dynamics of the entanglement spectrum in spin chains, J. Stat. Mech. 2014 (2014) P06001.

    MathSciNet  MATH  Google Scholar 

  105. J. Surace, L. Tagliacozzo and E. Tonni, Operator content of entanglement spectra in the transverse field Ising chain after global quenches, Phys. Rev. B 101 (2020) 241107(R) [arXiv:1909.07381] [INSPIRE].

  106. J. Kudler-Flam, I. MacCormack and S. Ryu, Holographic entanglement contour, bit threads, and the entanglement tsunami, J. Phys. A 52 (2019) 325401 [arXiv:1902.04654] [INSPIRE].

  107. G. Di Giulio and E. Tonni, Complexity of mixed Gaussian states from Fisher information geometry, JHEP 12 (2020) 101 [arXiv:2006.00921] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  108. G. Di Giulio and E. Tonni, Subsystem complexity after a global quantum quench, JHEP 05 (2021) 022 [arXiv:2102.02764] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  109. V. Alba and P. Calabrese, Entanglement dynamics after quantum quenches in generic integrable systems, SciPost Phys. 4 (2018) 017 [arXiv:1712.07529] [INSPIRE].

    ADS  Google Scholar 

  110. M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An AbInitio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].

  111. S. Sotiriadis and P. Calabrese, Validity of the GGE for quantum quenches from interacting to noninteracting models, J. Stat. Mech. 1407 (2014) P07024 [arXiv:1403.7431] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  112. E. Ilievski, J. De Nardis, B. Wouters, J.S. Caux, F.H.L. Essler and T. Prosen, Complete Generalized Gibbs Ensembles in an Interacting Theory, Phys. Rev. Lett. 115 (2015) 157201 [arXiv:1507.02993].

  113. E. Ilievski, M. Medenjak, T. Prosen and L. Zadnik, Quasilocal charges in integrable lattice systems, J. Stat. Mech. 1606 (2016) 064008 [arXiv:1603.00440] [INSPIRE].

  114. L. Vidmar and M. Rigol, Generalized gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016 (2016) 064007.

  115. P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  116. V. Alba and P. Calabrese, Quench action and Renyi entropies in integrable systems, Phys. Rev. B 96 (2017) 115421 [arXiv:1705.10765] [INSPIRE].

  117. I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A 36 (2003) L205.

    ADS  MathSciNet  MATH  Google Scholar 

  118. V. Eisler and I. Peschel, Evolution of entanglement after a local quench, J. Stat. Mech. 2007 (2007) P06005.

  119. A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  120. L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].

  121. J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    ADS  MATH  Google Scholar 

  122. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

  123. C. Weedbrook et al., Gaussian quantum information, Rev. Mod. Phys. 84 (2012) 621 [arXiv:1110.3234].

    ADS  Google Scholar 

  124. R. Bhatia, Positive Definite Matrices, Princeton University Press (2007).

  125. A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Edizioni della Normale (2011).

  126. A. Czerwinski, Quantum tomography of three-qubit generalized Werner states, Int. J. Mod. Phys. B 36 (2022) 2250108 [arXiv:2104.11258] [INSPIRE].

    ADS  Google Scholar 

  127. D. Petz and D. Virosztek, Some inequalities for quantum Tsallis entropy related to the strong subadditivity, Math. Ineq. Appl. 18 (2015) 555 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  128. V. Eisler, G. Di Giulio, E. Tonni and I. Peschel, Entanglement Hamiltonians for non-critical quantum chains, J. Stat. Mech. 2010 (2020) 103102 [arXiv:2007.01804] [INSPIRE].

  129. E. Whittaker and G. Watson, A course of modern analysis, Cambridge University Press (1996).

  130. S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach, SciPost Phys. 8 (2020) 046 [arXiv:1911.09588] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  131. R.J. Baxter, Exactly solved models in statistical mechanics, Academic Pres (1982), [INSPIRE].

  132. E.H. Fradkin, Field Theories of Condensed Matter Physics, Cambridge Universite Press (2013) [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Instituto de Física de La Plata, CONICET, Diagonal 113 e/63 y 64, CC67, 1900, La Plata, Argentina

    Raúl Arias

  2. Departamento de Física, Universidad Nacional de La Plata, Calle 49 y 115 s/n, CC67, 1900, La Plata, Argentina

    Raúl Arias

  3. Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany

    Giuseppe Di Giulio

  4. Department of Physics, University of Helsinki, PO Box 64, FIN-00014, Helsinki, Finland

    Esko Keski-Vakkuri

  5. Helsinki Institute of Physics, University of Helsinki, PO Box 64, FIN-00014, Helsinki, Finland

    Esko Keski-Vakkuri

  6. International School for Advanced Studies (SISSA) and INFN Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy

    Erik Tonni

Authors
  1. Raúl Arias
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Giuseppe Di Giulio
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Esko Keski-Vakkuri
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Erik Tonni
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Giuseppe Di Giulio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2301.02117

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, R., Di Giulio, G., Keski-Vakkuri, E. et al. Probing RG flows, symmetry resolution and quench dynamics through the capacity of entanglement. J. High Energ. Phys. 2023, 175 (2023). https://doi.org/10.1007/JHEP03(2023)175

Download citation

  • Received: 03 February 2023

  • Accepted: 07 March 2023

  • Published: 23 March 2023

  • DOI: https://doi.org/10.1007/JHEP03(2023)175

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Lower Dimensions
  • Lattice Quantum Field Theory
  • Non-Equilibrium Field Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2024 Springer Nature