Abstract
We study a new physics scenario with two inert and one active scalar doublets, hence a 3-Higgs Doublet Model (3HDM). We impose a \( {Z}_2\times {Z}_2^{\prime } \) symmetry onto such a 3HDM with one inert doublet odd under the Z2 transformation and the other odd under the \( {Z}_2^{\prime } \) one. Such a construction leads to a two-component Dark Matter (DM) model. It has been shown that, when there is a sufficient mass difference between the two DM candidates, it is possible to probe the light DM candidate in the nuclear recoil energy in direct detection experiments and the heavy DM component in the photon flux in indirect detection experiments. With the DM masses at the electroweak scale, we show that, independently of astrophysical probes, this model feature can be tested at the Large Hadron Collider via scalar cascade decays in final states. We study several observable distributions whose shapes hint at the presence of the two different DM candidates.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
L. Bergström, Nonbaryonic dark matter: Observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].
J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
G. Belanger, K. Kannike, A. Pukhov and M. Raidal, Z3 Scalar Singlet Dark Matter, JCAP 01 (2013) 022 [arXiv:1211.1014] [INSPIRE].
R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
I.P. Ivanov and V. Keus, Zp scalar dark matter from multi-Higgs-doublet models, Phys. Rev. D 86 (2012) 016004 [arXiv:1203.3426] [INSPIRE].
B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, Tech. Rep. MIT-CTP-3745 (2006) [INSPIRE].
X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].
F.S. Queiroz and K. Sinha, The Poker Face of the Majoron Dark Matter Model: LUX to keV Line, Phys. Lett. B 735 (2014) 69 [arXiv:1404.1400] [INSPIRE].
Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].
A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].
A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct Detection of Higgs-Portal Dark Matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].
C. Arina, F.-S. Ling and M.H.G. Tytgat, IDM and iDM or The Inert Doublet Model and Inelastic Dark Matter, JCAP 10 (2009) 018 [arXiv:0907.0430] [INSPIRE].
E. Nezri, M.H.G. Tytgat and G. Vertongen, e+ and anti-p from inert doublet model dark matter, JCAP 04 (2009) 014 [arXiv:0901.2556] [INSPIRE].
X. Miao, S. Su and B. Thomas, Trilepton Signals in the Inert Doublet Model, Phys. Rev. D 82 (2010) 035009 [arXiv:1005.0090] [INSPIRE].
M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].
A. Arhrib, R. Benbrik and N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].
M. Krawczyk, D. Sokołowska, P. Swaczyna and B. Świeżewska, Higgs → γγ, Zγ in the Inert Doublet Model, Acta Phys. Polon. B 44 (2013) 2163 [arXiv:1309.7880] [INSPIRE].
A. Goudelis, B. Herrmann and O. Stål, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].
A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An Updated Analysis of Inert Higgs Doublet Model in light of the Recent Results from LUX, PLANCK, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE].
M. Krawczyk, M. Matej, D. Sokołowska and B. Świeżewska, The Universe in the Light of LHC, Acta Phys. Polon. B 46 (2015) 169 [arXiv:1501.04529] [INSPIRE].
A. Ilnicka, M. Krawczyk and T. Robens, Inert Doublet Model in light of LHC Run I and astrophysical data, Phys. Rev. D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE].
M.A. Díaz, B. Koch and S. Urrutia-Quiroga, Constraints to Dark Matter from Inert Higgs Doublet Model, Adv. High Energy Phys. 2016 (2016) 8278375 [arXiv:1511.04429] [INSPIRE].
K.P. Modak and D. Majumdar, Confronting Galactic and Extragalactic γ-rays Observed by Fermi-lat With Annihilating Dark Matter in an Inert Higgs Doublet Model, Astrophys. J. Suppl. 219 (2015) 37 [arXiv:1502.05682] [INSPIRE].
F.S. Queiroz and C.E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP 02 (2016) 038 [arXiv:1511.05967] [INSPIRE].
C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the Inert Doublet Dark Matter Model with Cherenkov Telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE].
M. Hashemi and S. Najjari, Observability of Inert Scalars at the LHC, Eur. Phys. J. C 77 (2017) 592 [arXiv:1611.07827] [INSPIRE].
P. Poulose, S. Sahoo and K. Sridhar, Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC, Phys. Lett. B 765 (2017) 300 [arXiv:1604.03045] [INSPIRE].
A. Alves, D.A. Camargo, A.G. Dias, R. Longas, C.C. Nishi and F.S. Queiroz, Collider and Dark Matter Searches in the Inert Doublet Model from Peccei-Quinn Symmetry, JHEP 10 (2016) 015 [arXiv:1606.07086] [INSPIRE].
A. Datta, N. Ganguly, N. Khan and S. Rakshit, Exploring collider signatures of the inert Higgs doublet model, Phys. Rev. D 95 (2017) 015017 [arXiv:1610.00648] [INSPIRE].
A. Belyaev, G. Cacciapaglia, I.P. Ivanov, F. Rojas-Abatte and M. Thomas, Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and non-LHC Dark Matter Searches, Phys. Rev. D 97 (2018) 035011 [arXiv:1612.00511] [INSPIRE].
A. Belyaev et al., Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal, Phys. Rev. D 99 (2019) 015011 [arXiv:1809.00933] [INSPIRE].
D. Sokolowska et al., Inert Doublet Model signatures at future e+e− colliders, PoS EPS-HEP2019 (2020) 570 [arXiv:1911.06254] [INSPIRE].
J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Zarnecki, The Inert Doublet Model at current and future colliders, J. Phys. Conf. Ser. 1586 (2020) 012023 [arXiv:1903.04456] [INSPIRE].
G. Belanger, K. Kannike, A. Pukhov and M. Raidal, Impact of semi-annihilations on dark matter phenomenology — an example of ZN symmetric scalar dark matter, JCAP 04 (2012) 010 [arXiv:1202.2962] [INSPIRE].
C.E. Yaguna and O. Zapata, Multi-component scalar dark matter from a ZN symmetry: a systematic analysis, JHEP 03 (2020) 109 [arXiv:1911.05515] [INSPIRE].
G. Bélanger, A. Pukhov, C.E. Yaguna and Ó. Zapata, The Z5 model of two-component dark matter, JHEP 09 (2020) 030 [arXiv:2006.14922] [INSPIRE].
V. Keus, S.F. King, S. Moretti and D. Sokolowska, Dark Matter with Two Inert Doublets plus One Higgs Doublet, JHEP 11 (2014) 016 [arXiv:1407.7859] [INSPIRE].
V. Keus, S.F. King and S. Moretti, Phenomenology of the inert (2 + 1) and (4 + 2) Higgs doublet models, Phys. Rev. D 90 (2014) 075015 [arXiv:1408.0796] [INSPIRE].
V. Keus, S.F. King, S. Moretti and D. Sokolowska, Observable Heavy Higgs Dark Matter, JHEP 11 (2015) 003 [arXiv:1507.08433] [INSPIRE].
A. Cordero-Cid et al., CP violating scalar Dark Matter, JHEP 12 (2016) 014 [arXiv:1608.01673] [INSPIRE].
A. Cordero et al., Dark Matter Signals at the LHC from a 3HDM, JHEP 05 (2018) 030 [arXiv:1712.09598] [INSPIRE].
A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. Moretti, D. Rojas and D. Sokołowska, Lepton collider indirect signatures of dark CP-violation, Eur. Phys. J. C 80 (2020) 135 [arXiv:1812.00820] [INSPIRE].
V. Keus, Dark CP-violation through the Z-portal, Phys. Rev. D 101 (2020) 073007 [arXiv:1909.09234] [INSPIRE].
A. Aranda et al., Z3 symmetric inert (2 + 1)-Higgs-doublet model, Phys. Rev. D 103 (2021) 015023 [arXiv:1907.12470] [INSPIRE].
A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and D. Sokołowska, Collider signatures of dark CP -violation, Phys. Rev. D 101 (2020) 095023 [arXiv:2002.04616] [INSPIRE].
S. Weinberg, Gauge Theory of CP Violation, Phys. Rev. Lett. 37 (1976) 657 [INSPIRE].
I.P. Ivanov and E. Vdovin, Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model, Eur. Phys. J. C 73 (2013) 2309 [arXiv:1210.6553] [INSPIRE].
V. Keus, S.F. King and S. Moretti, Three-Higgs-doublet models: symmetries, potentials and Higgs boson masses, JHEP 01 (2014) 052 [arXiv:1310.8253] [INSPIRE].
V. Keus and K. Tuominen, CP-violating inflation and its cosmological imprints, Phys. Rev. D 104 (2021) 063533 [arXiv:2102.07777] [INSPIRE].
V. Keus, Dark origins of matter-antimatter asymmetry, PoS CORFU2019 (2020) 059 [arXiv:2003.02141] [INSPIRE].
V. Keus, Baryogenesis from a CP-Violating Inflation, in Beyond Standard Model: From Theory to Experiment, Online Conference, Egypt (2021) [arXiv:2105.05700] [INSPIRE].
H. Davoudiasl, I.M. Lewis and M. Sullivan, Higgs Troika for Baryon Asymmetry, Phys. Rev. D 101 (2020) 055010 [arXiv:1909.02044] [INSPIRE].
I. de Medeiros Varzielas, S.F. King, C. Luhn and T. Neder, CP-odd invariants for multi-Higgs models: applications with discrete symmetry, Phys. Rev. D 94 (2016) 056007 [arXiv:1603.06942] [INSPIRE].
F. Hartmann and W. Kilian, Flavour Models with Three Higgs Generations, Eur. Phys. J. C 74 (2014) 3055 [arXiv:1405.1901] [INSPIRE].
R. González Felipe, I.P. Ivanov, C.C. Nishi, H. Serôdio and J.a.P. Silva, Constraining multi-Higgs flavour models, Eur. Phys. J. C 74 (2014) 2953 [arXiv:1401.5807] [INSPIRE].
F.R. Joaquim and J.T. Penedo, Radiative charged-lepton mass generation in multi-Higgs doublet models, Phys. Rev. D 90 (2014) 033011 [arXiv:1403.4925] [INSPIRE].
J. Hernandez-Sanchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and D. Sokolowska, Complementary Probes of Two-component Dark Matter, Tech. Rep. HIP-2020-35/TH (2020) [INSPIRE].
S. Khalil, S. Moretti, D. Rojas-Ciofalo and H. Waltari, Multicomponent dark matter in a simplified E6SSM, Phys. Rev. D 102 (2020) 075039 [arXiv:2007.10966] [INSPIRE].
I.P. Ivanov, V. Keus and E. Vdovin, Abelian symmetries in multi-Higgs-doublet models, J. Phys. A 45 (2012) 215201 [arXiv:1112.1660] [INSPIRE].
V. Keus, CP violation and BSM Higgs bosons, PoS CHARGED2016 (2016) 017 [arXiv:1612.03629] [INSPIRE].
B. Grzadkowski, O.M. Ogreid and P. Osland, Natural Multi-Higgs Model with Dark Matter and CP Violation, Phys. Rev. D 80 (2009) 055013 [arXiv:0904.2173] [INSPIRE].
F.S. Faro and I.P. Ivanov, Boundedness from below in the U(1) × U(1) three-Higgs-doublet model, Phys. Rev. D 100 (2019) 035038 [arXiv:1907.01963] [INSPIRE].
Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].
A. Pierce and J. Thaler, Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale, JHEP 08 (2007) 026 [hep-ph/0703056] [INSPIRE].
J. Heisig, S. Kraml and A. Lessa, Constraining new physics with searches for long-lived particles: Implementation into SModelS, Phys. Lett. B 788 (2019) 87 [arXiv:1808.05229] [INSPIRE].
ATLAS, CMS collaboration, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s} \) = 7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
CMS collaboration, Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].
ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [Erratum ibid. 652 (2021) C4] [INSPIRE].
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].
Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
M. Cirelli and G. Giesen, Antiprotons from Dark Matter: Current constraints and future sensitivities, JCAP 04 (2013) 015 [arXiv:1301.7079] [INSPIRE].
G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
L. Baudis, A. Ferella, A. Kish, A. Manalaysay, T. Marrodan Undagoitia and M. Schumann, Neutrino physics with multi-ton scale liquid xenon detectors, JCAP 01 (2014) 044 [arXiv:1309.7024] [INSPIRE].
Fermi-LAT collaboration, Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), Hamburg, Germany (1998), pg. 270 [hep-ph/9907280] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2202.10514
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hernández-Sánchez, J., Keus, V., Moretti, S. et al. Complementary collider and astrophysical probes of multi-component Dark Matter. J. High Energ. Phys. 2023, 45 (2023). https://doi.org/10.1007/JHEP03(2023)045
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2023)045