Skip to main content

Non-relativistic conformal field theory in the presence of boundary

A preprint version of the article is available at arXiv.

Abstract

We study non-relativistic conformal field theory on a flat space in the presence of a planar boundary. We compute correlation functions of primary operators and obtain the expression for the boundary conformal block. We also discuss the non-relativistic conformal field theory on a general curved background in the presence of a boundary. As an example, we discuss the spectrum of boundary primary operator and compute scaling dimensions in a fermionic theory near one and three spatial dimensions.

References

  1. C.R. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys. Rev. D 5 (1972) 377 [INSPIRE].

  2. U. Niederer, The maximal kinematical invariance group of the free Schrödinger equation, Helv. Phys. Acta 45 (1972) 802 [INSPIRE].

  3. M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Statist. Phys. 75 (1994) 1023 [hep-th/9310081] [INSPIRE].

    ADS  Article  Google Scholar 

  4. T. Mehen, I.W. Stewart and M.B. Wise, Conformal invariance for nonrelativistic field theory, Phys. Lett. B 474 (2000) 145 [hep-th/9910025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. M. Henkel and J. Unterberger, Schrödinger invariance and space-time symmetries, Nucl. Phys. B 660 (2003) 407 [hep-th/0302187] [INSPIRE].

    ADS  Article  Google Scholar 

  6. Y. Nishida and D.T. Son, An E-expansion for Fermi gas at infinite scattering length, Phys. Rev. Lett. 97 (2006) 050403 [cond-mat/0604500] [INSPIRE].

  7. Y. Nishida and D.T. Son, Fermi gas near unitarity around four and two spatial dimensions, Phys. Rev. A 75 (2007) 063617 [cond-mat/0607835] [INSPIRE].

  8. Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].

  9. E. Braaten and L. Platter, Exact relations for a strongly interacting Fermi gas from the operator product expansion, Phys. Rev. Lett. 100 (2008) 205301 [arXiv:0803.1125] [INSPIRE].

  10. S. Golkar and D.T. Son, Operator product expansion and conservation laws in non-relativistic conformal field theories, JHEP 12 (2014) 063 [arXiv:1408.3629] [INSPIRE].

    ADS  Article  Google Scholar 

  11. W.D. Goldberger, Z.U. Khandker and S. Prabhu, OPE convergence in non-relativistic conformal field theories, JHEP 12 (2015) 048 [arXiv:1412.8507] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  12. I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

  13. J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].

  14. D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

  16. D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

  17. J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

  18. D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP 12 (2015) 112 [arXiv:1510.01427] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. C.P. Herzog, K.-W. Huang and K. Jensen, Universal entanglement and boundary geometry in conformal field theory, JHEP 01 (2016) 162 [arXiv:1510.00021] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. K. Jensen and A. O’Bannon, Constraint on defect and boundary renormalization group flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].

  22. C.P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. H. Casini, I. Salazar Landea and G. Torroba, Irreversibility in quantum field theories with boundaries, JHEP 04 (2019) 166 [arXiv:1812.08183] [INSPIRE].

  24. N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a c-theorem in defect CFT, JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. Y. Wang, Defect a-theorem and a-maximization, JHEP 02 (2022) 061 [arXiv:2101.12648] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].

  27. C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [INSPIRE].

  28. K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, SciPost Phys. 5 (2018) 011 [arXiv:1408.6855] [INSPIRE].

    ADS  Article  Google Scholar 

  29. M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan geometry and Lifshitz holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].

  30. J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger invariance from Lifshitz isometries in holography and field theory, Phys. Rev. D 92 (2015) 066003 [arXiv:1409.1522] [INSPIRE].

  31. D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].

  32. D.T. Son, Newton-Cartan geometry and the quantum Hall effect, arXiv:1306.0638 [INSPIRE].

  33. M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime symmetries of the quantum Hall effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].

  34. C. Herzog, K.-W. Huang and K. Jensen, Displacement operators and constraints on boundary central charges, Phys. Rev. Lett. 120 (2018) 021601 [arXiv:1709.07431] [INSPIRE].

  35. K. Jensen, Anomalies for Galilean fields, SciPost Phys. 5 (2018) 005 [arXiv:1412.7750] [INSPIRE].

    ADS  Article  Google Scholar 

  36. I. Arav, S. Chapman and Y. Oz, Non-relativistic scale anomalies, JHEP 06 (2016) 158 [arXiv:1601.06795] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. R. Auzzi, S. Baiguera and G. Nardelli, On Newton-Cartan trace anomalies, JHEP 02 (2016) 003 [Erratum ibid. 02 (2016) 177] [arXiv:1511.08150] [INSPIRE].

  38. R. Auzzi, S. Baiguera and G. Nardelli, Nonrelativistic trace and diffeomorphism anomalies in particle number background, Phys. Rev. D 97 (2018) 085010 [arXiv:1711.00910] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2201.01964

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Singh, R. Non-relativistic conformal field theory in the presence of boundary. J. High Energ. Phys. 2022, 171 (2022). https://doi.org/10.1007/JHEP03(2022)171

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2022)171

Keywords

  • Boundary Quantum Field Theory
  • Global Symmetries
  • Space-Time Symme- tries