Abstract
This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyond simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of ∆\( {m}_{31}^2 \) between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a 5σ determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M.C. Gonzalez-Garcia and Y. Nir, Neutrino masses and mixing: evidence and implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].
M. Fukugita and T. Yanagida, Physics of neutrinos and applications in astrophysics, Springer, Berlin Germany (2003).
R.N. Mohapatra and P.B. Pal, Massive neutrinos in physics and astrophysics, World Scientific, Singapore (2004).
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
KamLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
P.F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071 [arXiv:2006.11237] [INSPIRE].
F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [Addendum ibid. 101 (2020) 116013] [arXiv:2003.08511] [INSPIRE].
V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing, and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].
S. Hannestad and T. Schwetz, Cosmology and the neutrino mass ordering, JCAP 11 (2016) 035 [arXiv:1606.04691] [INSPIRE].
E. Di Valentino, S. Gariazzo and O. Mena, Most constraining cosmological neutrino mass bounds, Phys. Rev. D 104 (2021) 083504 [arXiv:2106.15267] [INSPIRE].
M.J. Dolinski, A.W.P. Poon and W. Rodejohann, Neutrinoless double-beta decay: status and prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219 [arXiv:1902.04097] [INSPIRE].
C.H. Albright and M.-C. Chen, Model predictions for neutrino oscillation parameters, Phys. Rev. D 74 (2006) 113006 [hep-ph/0608137] [INSPIRE].
S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].
P.F. De Salas, S. Gariazzo, O. Mena, C.A. Ternes and M. Tórtola, Neutrino mass ordering from oscillations and beyond: 2018 status and future prospects, Front. Astron. Space Sci. 5 (2018) 36 [arXiv:1806.11051] [INSPIRE].
T2K collaboration, Search for electron antineutrino appearance in a long-baseline muon antineutrino beam, Phys. Rev. Lett. 124 (2020) 161802 [arXiv:1911.07283] [INSPIRE].
NOvA collaboration, First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA, Phys. Rev. Lett. 123 (2019) 151803 [arXiv:1906.04907] [INSPIRE].
Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126] [INSPIRE].
IceCube collaboration, Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data, Phys. Rev. D 91 (2015) 072004 [arXiv:1410.7227] [INSPIRE].
T2K collaboration, Improved constraints on neutrino mixing from the T2K experiment with 3.13 × 1021 protons on target, Phys. Rev. D 103 (2021) 112008 [arXiv:2101.03779] [INSPIRE].
NOvA collaboration, Recent three-flavor neutrino oscillation results from the NOvA experiment, J. Phys. Conf. Ser. 1690 (2020) 012172 [INSPIRE].
DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): conceptual design report, volume 2: the physics program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].
Hyper-Kamiokande Proto- collaboration, Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].
JUNO collaboration, Neutrino physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].
JUNO collaboration, JUNO conceptual design report, arXiv:1508.07166 [INSPIRE].
JUNO collaboration, JUNO physics and detector, arXiv:2104.02565 [INSPIRE].
KM3Net collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [arXiv:1601.07459] [INSPIRE].
Y.-F. Li, Y. Wang and Z.-z. Xing, Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?, Chin. Phys. C 40 (2016) 091001 [arXiv:1605.00900] [INSPIRE].
KM3NeT collaboration, First neutrino oscillation measurement in KM3NeT/ORCA, PoS ICRC2021 (2021) 1123 [INSPIRE].
H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].
A. de Gouvêa, J. Jenkins and B. Kayser, Neutrino mass hierarchy, vacuum oscillations, and vanishing |U(e3)|, Phys. Rev. D 71 (2005) 113009 [hep-ph/0503079] [INSPIRE].
IceCube collaboration, PINGU: a vision for neutrino and particle physics at the South Pole, J. Phys. G 44 (2017) 054006 [arXiv:1607.02671] [INSPIRE].
M. Blennow and T. Schwetz, Determination of the neutrino mass ordering by combining PINGU and Daya Bay II, JHEP 09 (2013) 089 [arXiv:1306.3988] [INSPIRE].
IceCube-Gen2 collaboration, Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, Phys. Rev. D 101 (2020) 032006 [arXiv:1911.06745] [INSPIRE].
KM3NeT collaboration, Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA, Eur. Phys. J. C 82 (2022) 26 [arXiv:2103.09885] [INSPIRE].
JUNO collaboration, TAO conceptual design report: a precision measurement of the reactor antineutrino spectrum with sub-percent energy resolution, arXiv:2005.08745 [INSPIRE].
D.A. Dwyer and T.J. Langford, Spectral structure of electron antineutrinos from nuclear reactors, Phys. Rev. Lett. 114 (2015) 012502 [arXiv:1407.1281] [INSPIRE].
P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( \overline{\nu} \)e + p → e+ + n, Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].
F. Von Feilitzsch, A.A. Hahn and K. Schreckenbach, Experimental beta spectra from Pu-239 and U-235 thermal neutron fission products and their correlated anti-neutrinos spectra, Phys. Lett. B 118 (1982) 162 [INSPIRE].
K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from U-235 thermal neutron fission products up to 9.5-MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].
A.A. Hahn, K. Schreckenbach, G. Colvin, B. Krusche, W. Gelletly and F. Von Feilitzsch, Anti-neutrino spectra from 241Pu and 239Pu thermal neutron fission products, Phys. Lett. B 218 (1989) 365 [INSPIRE].
Daya Bay collaboration, Improved measurement of the reactor antineutrino flux at daya bay, Phys. Rev. D 100 (2019) 052004 [arXiv:1808.10836] [INSPIRE].
Daya Bay collaboration, Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].
V. Kopeikin, L. Mikaelyan and V. Sinev, Reactor as a source of antineutrinos: thermal fission energy, Phys. Atom. Nucl. 67 (2004) 1892 [hep-ph/0410100] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].
S.T. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].
G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
J.A. Formaggio and G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales, Rev. Mod. Phys. 84 (2012) 1307 [arXiv:1305.7513] [INSPIRE].
KM3NeT collaboration, gSeaGen: the KM3NeT GENIE-based code for neutrino telescopes, Comput. Phys. Commun. 256 (2020) 107477 [arXiv:2003.14040] [INSPIRE].
C. Andreopoulos et al., The GENIE neutrino monte carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].
A.G. Tsirigotis, A. Leisos and S.E. Tzamarias, HOU Reconstruction & Simulation (HOURS): a complete simulation and reconstruction package for very large volume underwater neutrino telescopes, Nucl. Instrum. Meth. A 626-627 (2011) S185 [INSPIRE].
GEANT4 collaboration, GEANT4 — A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
KM3NeT collaboration, Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units: The KM3NeT Collaboration, Eur. Phys. J. C 80 (2020) 99 [arXiv:1906.02704] [INSPIRE].
J. Hofestädt, Measuring the neutrino mass hierarchy with the future KM3NeT/ORCA detector, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (2017).
L. Quinn, Neutrino Mass Hierarchy Determination with KM3NeT/ORCA, Ph.D. thesis, Aix-Marseille University, France (2018).
S. Bourret, Neutrino oscillations and Earth tomography with KM3NeT-ORCA, Ph.D. thesis, APC, Paris, France (2018).
M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].
J.A.B. Coelho et al., OscProb Neutrino Oscillation Calculator, https://github.com/joaoabcoelho/OscProb.
A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297.
R.J. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun. 77 (1993) 219 [INSPIRE].
D. Casadei, Estimating the selection efficiency, 2012 JINST 7 P08021 [arXiv:0908.0130] [INSPIRE].
M. Paterno, Calculating efficiencies and their uncertainties, [INSPIRE].
G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in atmospheric neutrino fluxes, Phys. Rev. D 74 (2006) 094009 [astro-ph/0611266] [INSPIRE].
IceCube collaboration, Measurement of atmospheric tau neutrino appearance with IceCube DeepCore, Phys. Rev. D 99 (2019) 032007 [arXiv:1901.05366] [INSPIRE].
(IceCube Collaboration)*, IceCube collaboration, All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data, Phys. Rev. D 104 (2021) 072006 [arXiv:2106.07755] [INSPIRE].
Daya Bay collaboration, Measurement of the electron antineutrino oscillation with 1958 days of operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261] [INSPIRE].
RENO collaboration, Measurement of reactor antineutrino oscillation amplitude and frequency at RENO, Phys. Rev. Lett. 121 (2018) 201801 [arXiv:1806.00248] [INSPIRE].
Double CHOOZ collaboration, Double CHOOZ θ13 measurement via total neutron capture detection, Nature Phys. 16 (2020) 558 [arXiv:1901.09445] [INSPIRE].
S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals Math. Statist. 9 (1938) 60 [INSPIRE].
E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a neutrino mass hierarchy determination, JHEP 01 (2014) 095 [arXiv:1305.5150] [INSPIRE].
X. Qian, A. Tan, W. Wang, J.J. Ling, R.D. McKeown and C. Zhang, Statistical evaluation of experimental determinations of neutrino mass hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].
JUNO collaboration, Calibration strategy of the JUNO experiment, JHEP 03 (2021) 004 [arXiv:2011.06405] [INSPIRE].
Author information
Authors and Affiliations
Consortia
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2108.06293
Deceased (G. Androulakis)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
KM3NeT collaboration., Aiello, S., Albert, A. et al. Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering. J. High Energ. Phys. 2022, 55 (2022). https://doi.org/10.1007/JHEP03(2022)055
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2022)055