Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Electric dipole moments, new forces and dark matter
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Spontaneous CP-violating electroweak baryogenesis and dark matter from a complex singlet scalar

22 August 2018

Bohdan Grzadkowski & Da Huang

Pseudo-Goldstone dark matter model with CP violation

16 June 2022

Neda Darvishi & Bohdan Grzadkowski

Flavor-diagonal CP violation: the electric dipole moment

12 April 2021

Andrea Shindler

Baryon asymmetric Universe from spontaneous CP violation

19 April 2022

Kohei Fujikura, Yuichiro Nakai, … Masaki Yamada

Higgs Parity, strong CP and dark matter

03 July 2019

David Dunsky, Lawrence J. Hall & Keisuke Harigaya

Flavor and CP violation from a QCD-like hidden sector

02 February 2022

Wafia Bensalem & Daniel Stolarski

CP in the dark

14 November 2018

Duarte Azevedo, Pedro M. Ferreira, … Jonas Wittbrodt

The role of leptons in electroweak baryogenesis

03 April 2019

Jordy de Vries, Marieke Postma & Jorinde van de Vis

Dark matter electromagnetic dipoles: the WIMP expectation

19 November 2021

Thomas Hambye & Xun-Jie Xu

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 March 2021

Electric dipole moments, new forces and dark matter

  • Pavel Fileviez Pérez1 &
  • Alexis D. Plascencia1 

Journal of High Energy Physics volume 2021, Article number: 185 (2021) Cite this article

  • 170 Accesses

  • 6 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

New sources of CP violation beyond the Standard Model are crucial to explain the baryon asymmetry in the Universe. We discuss the impact of new CP violating interactions in theories where a dark matter candidate is predicted by the cancellation of gauge anomalies. In these theories, the constraint on the dark matter relic density implies an upper bound on the new symmetry breaking scale from which all new states acquire their masses. We investigate in detail the predictions for electric dipole moments and show that if the relevant CP-violating phase is large, experiments such as the ACME collaboration will be able to fully probe the theory.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  2. W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313 [Erratum ibid. 64 (1992) 633] [INSPIRE].

  3. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Fukuyama, Searching for new physics beyond the standard model in electric dipole moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases, and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].

  7. S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [INSPIRE].

    Article  ADS  Google Scholar 

  8. O. Lebedev and M. Pospelov, Electric dipole moments in the limit of heavy superpartners, Phys. Rev. Lett. 89 (2002) 101801 [hep-ph/0204359] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Chang, W.-F. Chang and W.-Y. Keung, New constraint from electric dipole moments on chargino baryogenesis in MSSM, Phys. Rev. D 66 (2002) 116008 [hep-ph/0205084] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Pilaftsis, Higgs mediated electric dipole moments in the MSSM: An application to baryogenesis and Higgs searches, Nucl. Phys. B 644 (2002) 263 [hep-ph/0207277] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. A. Demir, O. Lebedev, K. A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in the MSSM at large tan β, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Carena, A. Megevand, M. Quirós and C. E. M. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005) 319 [hep-ph/0410352] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Y. Li, S. Profumo and M. Ramsey-Musolf, Higgs-Higgsino-Gaugino induced two loop electric dipole moments, Phys. Rev. D 78 (2008) 075009 [arXiv:0806.2693] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. R. Ellis, J. S. Lee and A. Pilaftsis, Electric dipole moments in the MSSM reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

    Article  ADS  Google Scholar 

  15. N. Yamanaka, Two-loop level rainbowlike supersymmetric contribution to the fermion electric dipole moment, Phys. Rev. D 87 (2013) 011701 [arXiv:1211.1808] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. McKeen, M. Pospelov and A. Ritz, Electric dipole moment signatures of PeV-scale superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Nakai and M. Reece, Electric dipole moments in natural supersymmetry, JHEP 08 (2017) 031 [arXiv:1612.08090] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the electron EDM constraint, JHEP 05 (2019) 059 [arXiv:1810.07736] [INSPIRE].

    Article  ADS  Google Scholar 

  19. N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Chang, W.-F. Chang and W.-Y. Keung, Electric dipole moment in the split supersymmetry models, Phys. Rev. D 71 (2005) 076006 [hep-ph/0503055] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Fuyuto, X.-G. He, G. Li and M. Ramsey-Musolf, CP-violating dark photon interaction, Phys. Rev. D 101 (2020) 075016 [arXiv:1902.10340] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Okawa, M. Pospelov and A. Ritz, Electric dipole moments from dark sectors, Phys. Rev. D 100 (2019) 075017 [arXiv:1905.05219] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Fan and M. Reece, Probing charged matter through Higgs diphoton decay, gamma ray lines, and EDMs, JHEP 06 (2013) 004 [arXiv:1301.2597] [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Abe, Effect of CP-violation in the singlet-doublet dark matter model, Phys. Lett. B 771 (2017) 125 [arXiv:1702.07236] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The bearable compositeness of leptons, JHEP 10 (2018) 017 [arXiv:1807.04279] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron electric dipole moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Duerr, P. Fileviez Perez and M. B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Fileviez Perez, S. Ohmer and H. H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S. M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

  33. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  34. P. Fileviez Pérez, E. Golias, R.-H. Li, C. Murgui and A. D. Plascencia, Anomaly-free dark matter models, Phys. Rev. D 100 (2019) 015017 [arXiv:1904.01017] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Fileviez Pérez, C. Murgui and A. D. Plascencia, Neutrino-dark matter connections in gauge theories, Phys. Rev. D 100 (2019) 035041 [arXiv:1905.06344] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. J. Doyle, Search for the electric dipole moment of the electron with thorium monoxide — The ACME experiment, talk given at the KITP Conference: Symmetry Tests in Nuclei and Atoms, September 19–23, Santa Barbara, U.S.A. (2016).

  37. I. Kozyryev and N. R. Hutzler, Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules, Phys. Rev. Lett. 119 (2017) 133002 [arXiv:1705.11020] [INSPIRE].

    Article  ADS  Google Scholar 

  38. nEDM collaboration, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].

  39. S. Alioli, M. Farina, D. Pappadopulo and J. T. Ruderman, Catching a new force by the tail, Phys. Rev. Lett. 120 (2018) 101801 [arXiv:1712.02347] [INSPIRE].

    Article  ADS  Google Scholar 

  40. ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].

  41. P. F. Pérez, E. Golias, C. Murgui and A. D. Plascencia, The Higgs and leptophobic force at the LHC, JHEP 07 (2020) 087 [arXiv:2003.09426] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Carena, M. Quirós and Y. Zhang, Electroweak baryogenesis from dark-sector CP-violation, Phys. Rev. Lett. 122 (2019) 201802 [arXiv:1811.09719] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Carena, M. Quirós and Y. Zhang, Dark CP-violation and gauged lepton or baryon number for electroweak baryogenesis, Phys. Rev. D 101 (2020) 055014 [arXiv:1908.04818] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department and Center for Education and Research in Cosmology and Astrophysics (CERCA), Case Western Reserve University, Cleveland, OH, 44106, USA

    Pavel Fileviez Pérez & Alexis D. Plascencia

Authors
  1. Pavel Fileviez Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.09116

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Plascencia, A.D. Electric dipole moments, new forces and dark matter. J. High Energ. Phys. 2021, 185 (2021). https://doi.org/10.1007/JHEP03(2021)185

Download citation

  • Received: 08 October 2020

  • Revised: 02 December 2020

  • Accepted: 14 February 2021

  • Published: 19 March 2021

  • DOI: https://doi.org/10.1007/JHEP03(2021)185

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • CP violation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.