Abstract
The CKM angle γ is measured for the first time from mixing-induced CP violation between \( {B}_s^0\to {D}_s^{\mp }{K}^{\pm }{\pi}^{\pm }{\pi}^{\mp } \) and \( {\overline{B}}_s^0\to {D}_s^{\pm }{K}^{\mp }{\pi}^{\mp }{\pi}^{\pm } \) decays reconstructed in proton-proton collision data corresponding to an integrated luminosity of 9 fb−1 recorded with the LHCb detector. A time-dependent amplitude analysis is performed to extract the CP-violating weak phase γ − 2βs and, subsequently, γ by taking the \( {B}_s^0\hbox{-} {\overline{B}}_s^0 \) mixing phase βs as an external input. The measurement yields γ = (44 ± 12)° modulo 180°, where statistical and systematic uncertainties are combined. An alternative model-independent measurement, integrating over the five-dimensional phase space of the decay, yields \( \gamma =\left({44}_{-13}^{+20}\right){}^{\circ} \) modulo 180°. Moreover, the \( {B}_s^0\hbox{-} {\overline{B}}_s^0 \) oscillation frequency is measured from the flavour-specific control channel \( {B}_s^0\to {D}_s^{-}{\pi}^{+}{\pi}^{+}{\pi}^{-} \) to be ∆ms = (17.757 ± 0.007(stat) ± 0.008(syst)) ps−1, consistent with and more precise than the current world-average value.

References
N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].
M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].
HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, arXiv:1909.12524 [INSPIRE].
LHCb collaboration, Update of the LHCb combination of the CKM angle γ, Tech. Rep. LHCb-CONF-2018-002, CERN, Geneva, Switzerland (2018) [CERN-LHCb-CONF-2018-002].
J. Charles et al., Current status of the Standard Model CKM fit and constraints on ∆F = 2 new physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].
UTfit collaboration, The unitarity triangle fit in the Standard Model and hadronic parameters from lattice QCD: a reappraisal after the measurements of ∆ms and BR(B → τντ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].
R. Fleischer, New strategies to obtain insights into CP-violation through \( {B}_s\to {D}_s^{\pm }{K}^{\mp },{D}_s^{\ast \pm }{K}^{\mp } \) and Bd → D±π∓, D*±π∓ decays, Nucl. Phys. B 671 (2003) 459 [hep-ph/0304027] [INSPIRE].
K. De Bruyn, R. Fleischer, R. Knegjens, M. Merk, M. Schiller and N. Tuning, Exploring \( {B}_s\to {D}_s^{\left(\ast \right)\pm }{K}^{\mp } \) decays in the presence of a sizable width difference ∆Γs, Nucl. Phys. B 868 (2013) 351 [arXiv:1208.6463] [INSPIRE]
LHCb collaboration, Precision measurement of CP violation in \( {B}_s^0\to J/\psi {K}^{+}{K}^{-} \) decays, Phys. Rev. Lett. 114 (2015) 041801 [arXiv:1411.3104] [INSPIRE].
LHCb collaboration, Updated measurement of time-dependent CP-violating observables in \( {B}_s^0\to J/\psi {K}^{+}{K}^{-} \) decays, Eur. Phys. J. C 79 (2019) 706 [Erratum ibid. 80 (2020) 601] [arXiv:1906.08356] [INSPIRE].
LHCb collaboration, Measurement of the CP-violating phase ϕs in \( {\overline{B}}_s^0\to J/{\psi \pi}^{+}{\pi}^{-} \) decays, Phys. Lett. B 736 (2014) 186 [arXiv:1405.4140] [INSPIRE].
LHCb collaboration, First study of the CP-violating phase and decay-width difference in \( {B}_s^0\to \psi (2S)\phi \) decays, Phys. Lett. B 762 (2016) 253 [arXiv:1608.04855] [INSPIRE].
LHCb collaboration, Measurement of the CP-violating phase ϕs in \( {\overline{B}}_s^0\to {D}_s^{+}{D}_s^{-} \) decays, Phys. Rev. Lett. 113 (2014) 211801 [arXiv:1409.4619] [INSPIRE].
LHCb collaboration, Measurement of the CP-violating phase ϕs from \( {B}_s^0\to J/{\psi \pi}^{+}{\pi}^{-} \) decays in 13 TeV pp collisions, Phys. Lett. B 797 (2019) 134789 [arXiv:1903.05530] [INSPIRE].
L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 51 (1983) 1945 [INSPIRE].
LHCb collaboration, Measurement of CP asymmetry in \( {B}_s^0\to {D}_s^{\mp }{K}^{\pm } \) decays, JHEP 11 (2014) 060 [arXiv:1407.6127] [INSPIRE].
LHCb collaboration, Measurement of CP asymmetry in \( {B}_s^0\to {D}_s^{\mp }{K}^{\pm } \) decays, JHEP 03 (2018) 059 [arXiv:1712.07428] [INSPIRE].
LHCb collaboration, First observation of the decays \( {\overline{B}}_{(s)}^0\to {D}_s^{+}{K}^{-}{\pi}^{+}{\pi}^{-} \) and \( {\overline{B}}_s^0\to {D}_{s1}{(2536)}^{+}{\pi}^{-} \), Phys. Rev. D 86 (2012) 112005 [arXiv:1211.1541] [INSPIRE].
S. Mandelstam, J. Paton, R.F. Peierls and A. Sarker, Isobar approximation of production processes, Ann. Phys. 18 (1962) 198.
D. Herndon, P. Söding and R.J. Cashmore, A generalized isobar model formalism, Phys. Rev. D 11 (1975) 3165 [INSPIRE].
J. Brehm, Unitarity and the isobar model: two-body discontinuities, Ann. Phys. 108 (1977) 454.
F. Von Hippel and C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes, Phys. Rev. D 5 (1972) 624 [INSPIRE].
J.M. Blatt and V.F. Weisskopf, Theoretical nuclear physics, Springer, New York, NY, U.S.A. (1952) [INSPIRE].
J.D. Jackson, Remarks on the phenomenological analysis of resonances, Nuovo Cim. 34 (1964) 1644 [INSPIRE].
D.V. Bugg, The mass of the sigma pole, J. Phys. G 34 (2007) 151 [hep-ph/0608081] [INSPIRE].
D. Aston et al., A study of K−π+ scattering in the reaction K−p → K−π+n at 11 GeV/c, Nucl. Phys. B 296 (1988) 493 [INSPIRE].
BaBar collaboration, Dalitz-plot analysis of the decays B± → K±π∓π±, Phys. Rev. D 72 (2005) 072003 [Erratum ibid. 74 (2006) 099903] [hep-ex/0507004] [INSPIRE].
G.J. Gounaris and J.J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρ → e+e−, Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].
P. d’Argent et al., Amplitude analyses of D0 → π+π−π+π− and D0 → K+K−π+π− decays, JHEP 05 (2017) 143 [arXiv:1703.08505] [INSPIRE].
CMD-2 collaboration, Measurement of e+e− → π+π− cross-section with CMD-2 around ρ meson, Phys. Lett. B 527 (2002) 161 [hep-ex/0112031] [INSPIRE].
LHCb collaboration, Search for CP violation through an amplitude analysis of D0 → K+K−π+π− decays, JHEP 02 (2019) 126 [arXiv:1811.08304] [INSPIRE].
C. Zemach, Use of angular momentum tensors, Phys. Rev. 140 (1965) B97 [INSPIRE].
W. Rarita and J. Schwinger, On a theory of particles with half integral spin, Phys. Rev. 60 (1941) 61 [INSPIRE].
S.U. Chung, A general formulation of covariant helicity coupling amplitudes, Phys. Rev. D 57 (1998) 431 [INSPIRE].
B.S. Zou and D.V. Bugg, Covariant tensor formalism for partial wave analyses of ψ decay to mesons, Eur. Phys. J. A 16 (2003) 537 [hep-ph/0211457] [INSPIRE].
V. Filippini, A. Fontana and A. Rotondi, Covariant spin tensors in meson spectroscopy, Phys. Rev. D 51 (1995) 2247 [INSPIRE].
J. Rademacker, P. d’Argent and J. Dalseno, jdalseno/Mint2: Mint2, Zenodo, (2019).
T.D. Lee, R. Oehme and C.-N. Yang, Remarks on possible noninvariance under time reversal and charge conjugation, Phys. Rev. 106 (1957) 340 [INSPIRE].
I. Dunietz, R. Fleischer and U. Nierste, In pursuit of new physics with Bs decays, Phys. Rev. D 63 (2001) 114015 [hep-ph/0012219] [INSPIRE].
M. Artuso, G. Borissov and A. Lenz, CP violation in the \( {B}_s^0 \) system, Rev. Mod. Phys. 88 (2016) 045002 [Addendum ibid. 91 (2019) 049901] [arXiv:1511.09466] [INSPIRE].
I. Dunietz and R.G. Sachs, Asymmetry between inclusive charmed and anticharmed modes in B0, \( {\overline{B}}^0 \) decay as a measure of CP violation, Phys. Rev. D 37 (1988) 3186 [Erratum ibid. 39 (1989) 3515] [INSPIRE].
LHCb collaboration, Measurement of the flavour-specific CP-violating asymmetry \( {a}_{sl}^s \) in \( {B}_s^0 \) decays, Phys. Lett. B 728 (2014) 607 [arXiv:1308.1048] [INSPIRE].
LHCb collaboration, Measurement of the CP asymmetry in \( {B}_s^0\hbox{-} {\overline{B}}_s^0 \) mixing, Phys. Rev. Lett. 117 (2016) 061803 [Addendum ibid. 118 (2017) 129903] [arXiv:1605.09768] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
R. Aaij et al., Performance of the LHCb vertex locator, 2014 JINST 9 P09007 [arXiv:1405.7808] [INSPIRE].
LHCbOuter Tracker Group collaboration, Performance of the LHCb outer tracker, 2014 JINST 9 P01002 [arXiv:1311.3893] [INSPIRE].
LHCbOuter Tracker Group collaboration, Improved performance of the LHCb outer tracker in LHC run 2, 2017 JINST 12 P11016 [arXiv:1708.00819] [INSPIRE].
LHCbRICH Group collaboration, Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].
R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].
V.V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, 2013 JINST 8 P02013 [arXiv:1210.6861] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
LHCb collaboration, The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552 (2005) 566 [physics/0503191] [INSPIRE].
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, CA, U.S.A. (1984).
Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
N.L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36 (1949) 149.
L. Anderlini et al., The PIDCalib package, Tech. Rep. LHCb-PUB-2016-021, CERN, Geneva, Switzerland (2016) [CERN-LHCb-PUB-2016-021].
M. Pivk and F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].
Y. Xie, sFit: a method for background subtraction in maximum likelihood fit, arXiv:0905.0724 [INSPIRE].
LHCb collaboration, Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C 72 (2012) 2022 [arXiv:1202.4979] [INSPIRE].
LHCb collaboration, B flavour tagging using charm decays at the LHCb experiment, 2015 JINST 10 P10005 [arXiv:1507.07892] [INSPIRE].
LHCb collaboration, A new algorithm for identifying the flavour of \( {B}_s^0 \) mesons at LHCb, 2016 JINST 11 P05010 [arXiv:1602.07252] [INSPIRE].
LHCb collaboration, Precision measurement of the \( {B}_s^0\hbox{-} {\overline{B}}_s^0 \) oscillation frequency with the decay \( {B}_s^0\to {D}_s^{-}{\pi}^{+} \), New J. Phys. 15 (2013) 053021 [arXiv:1304.4741] [INSPIRE].
LHCb collaboration, Measurement of CP violation in B0 → D∓π± decays, JHEP 06 (2018) 084 [arXiv:1805.03448] [INSPIRE].
G. Punzi, Comments on likelihood fits with variable resolution, eConf C 030908 (2003) WELT002 [physics/0401045] [INSPIRE].
E. Cohen, R.F. Riesenfeld and G. Elber, Geometric modeling with splines: an introduction, A.K. Peters, Ltd., Natick, MA, U.S.A. (2001).
P.L. Butzer, M. Schmidt and E.L. Stark, Observations on the history of central b-splines, Arch. Hist. Exact Sci. 39 (1988) 137.
T.M. Karbach, G. Raven and M. Schiller, Decay time integrals in neutral meson mixing and their efficient evaluation, arXiv:1407.0748 [INSPIRE].
D. Fazzini, Flavour tagging in the LHCb experiment, in Proceedings, 6th Large Hadron Collider Physics Conference (LHCP 2018), Bologna, Italy, 4–9 June 2018 [PoS(LHCP2018)230].
LHCb collaboration, Measurement of B0, \( {B}_s^0 \), B+ and \( {\Lambda}_b^0 \) production asymmetries in 7 and TeV proton-proton collisions, Phys. Lett. B 774 (2017) 139 [arXiv:1703.08464] [INSPIRE].
A. Davis et al., Measurement of the instrumental asymmetry for K−π+-pairs at LHCb in run 2, Tech. Rep. LHCb-PUB-2018-004, CERN, Geneva, Switzerland (2018) [CERN-LHCb-PUB-2018-004].
MARK-III collaboration, Resonant substructure in \( \overline{K}\pi \pi \pi \) decays of D mesons, Phys. Rev. D 45 (1992) 2196 [INSPIRE].
FOCUS collaboration, Study of the D0 → π−π+π−π+ decay, Phys. Rev. D 75 (2007) 052003 [hep-ex/0701001] [INSPIRE].
CLEO collaboration, Amplitude analysis of D0 → K+K−π+π−, Phys. Rev. D 85 (2012) 122002 [arXiv:1201.5716] [INSPIRE].
R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. B 58 (1996) 267.
B. Guegan, J. Hardin, J. Stevens and M. Williams, Model selection for amplitude analysis, 2015 JINST 10 P09002 [arXiv:1505.05133] [INSPIRE].
G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978) 461.
M. Kenzie, M. Karbach, T. Mombächer, M. Schlupp and K. Schubert, GammaCombo framework for combinations of measurements and computation of confidence intervals: public release v1.3, Zenodo, (2020).
LHCb collaboration, Measurement of the CKM angle γ from a combination of LHCb results, JHEP 12 (2016) 087 [arXiv:1611.03076] [INSPIRE].
D. King, A. Lenz and T. Rauh, Bs mixing observables and |Vtd/Vts| from sum rules, JHEP 05 (2019) 034 [arXiv:1904.00940] [INSPIRE].
LHCb collaboration, Studies of the resonance structure in D0 → K∓π±π±π∓ decays, Eur. Phys. J. C 78 (2018) 443 [arXiv:1712.08609] [INSPIRE].