Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Minimal Froggatt-Nielsen textures

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 12 March 2021
  • Volume 2021, article number 135, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Minimal Froggatt-Nielsen textures
Download PDF
  • Marco Fedele1,
  • Alessio Mastroddi2,3 &
  • Mauro Valli  ORCID: orcid.org/0000-0002-0899-37354 
  • 279 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The flavour problem of the Standard Model can be addressed through the Froggatt-Nielsen (FN) mechanism. In this work, we develop an approach to the study of FN textures building a direct link between FN-charge assignments and the measured masses and mixing angles via unitary transformations in flavour space. We specifically focus on the quark sector to identify the most economic FN models able to provide a dynamical and natural understanding of the flavour puzzle. Remarkably, we find viable FN textures, involving charges under the horizontal symmetry that do not exceed one in absolute value (in units of the flavon charge). Within our approach, we also explore the degree of tuning of FN models in solving the flavour problem via a measure analogous to the Barbieri-Giudice one. We find that most of the solutions do not involve peculiar cancellations in flavour space.

Article PDF

Download to read the full article text

Similar content being viewed by others

The problem of flavour

Article 27 January 2025

Froggatt-Nielsen ALP

Article Open access 25 September 2024

Minimally modified Fritzsch texture for quark masses and CKM mixing

Article Open access 24 August 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.L. Feng, Naturalness and the Status of Supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].

    Article  ADS  Google Scholar 

  2. N. Craig, The State of Supersymmetry after Run I of the LHC, in Beyond the Standard Model after the first run of the LHC, Florence Italy (2013) [arXiv:1309.0528] [INSPIRE].

  3. G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lecture Notes Phys. 913 (2016) 1.

    Article  MATH  Google Scholar 

  4. M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

    ADS  Google Scholar 

  5. A. de Gouvêa, D. Hernandez and T.M.P. Tait, Criteria for Natural Hierarchies, Phys. Rev. D 89 (2014) 115005 [arXiv:1402.2658] [INSPIRE].

  6. M. Dine, Naturalness Under Stress, Ann. Rev. Nucl. Part. Sci. 65 (2015) 43 [arXiv:1501.01035] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G.F. Giudice, The Dawn of the Post-Naturalness Era, in From My Vast Repertoire ...: Guido Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi eds., World Scientific, New York U.S.A. (2019), pg. 267 [arXiv:1710.07663] [INSPIRE].

  9. S. Weinberg, The Problem of Mass, Trans. New York Acad. Sci. 38 (1977) 185.

    Article  Google Scholar 

  10. H. Fritzsch and Z.-z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1 [hep-ph/9912358] [INSPIRE].

  11. S. Raby, Introduction to theories of fermion masses, Trieste HEP Cosmology, Trieste Italy (1994), pg. 0126 [hep-ph/9501349] [INSPIRE].

  12. G. Ross, Models of fermion masses, in Flavor Physics for the Millennium, World Scientific, New York U.S.A. (2001), pg. 775.

  13. N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [INSPIRE].

    Google Scholar 

  16. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. K.S. Babu, TASI Lectures on Flavor Physics, in Theoretical Advanced Study Institute in Elementary Particle Physics: The Dawn of the LHC Era, Boulder U.S.A. (2008), pg. 49 [arXiv:0910.2948] [INSPIRE].

  18. F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015) 373 [arXiv:1503.04071] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. Feruglio and A. Romanino, Neutrino Flavour Symmetries, arXiv:1912.06028 [INSPIRE].

  20. R. Barbieri, G.R. Dvali, A. Strumia, Z. Berezhiani and L.J. Hall, Flavor in supersymmetric grand unification: A Democratic approach, Nucl. Phys. B 432 (1994) 49 [hep-ph/9405428] [INSPIRE].

  21. R. Barbieri, L.J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl. Phys. B 493 (1997) 3 [hep-ph/9610449] [INSPIRE].

  22. S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [INSPIRE].

  23. S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

  24. M. Linster and R. Ziegler, A Realistic U(2) Model of Flavor, JHEP 08 (2018) 058 [arXiv:1805.07341] [INSPIRE].

    Article  ADS  Google Scholar 

  25. F. Arias-Aragón, C. Bouthelier-Madre, J.M. Cano and L. Merlo, Data Driven Flavour Model, Eur. Phys. J. C 80 (2020) 854 [arXiv:2003.05941] [INSPIRE].

  26. L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].

  27. T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].

  28. M. Berasaluce-Gonzalez, P.G. Cámara, F. Marchesano, D. Regalado and A.M. Uranga, Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059 [arXiv:1206.2383] [INSPIRE].

  29. S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

  30. M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M. Ratz and A. Trautner, CP Violation from Finite Groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Binetruy and P. Ramond, Yukawa textures and anomalies, Phys. Lett. B 350 (1995) 49 [hep-ph/9412385] [INSPIRE].

  32. P. Binetruy, S. Lavignac and P. Ramond, Yukawa textures with an anomalous horizontal Abelian symmetry, Nucl. Phys. B 477 (1996) 353 [hep-ph/9601243] [INSPIRE].

  33. S. Weinberg, Electromagnetic and weak masses, Phys. Rev. Lett. 29 (1972) 388 [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Georgi and S.L. Glashow, Attempts to calculate the electron mass, Phys. Rev. D 7 (1973) 2457 [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.M. Barr and A. Zee, A New Approach to the electron-Muon Mass Ratio, Phys. Rev. D 15 (1977) 2652 [INSPIRE].

    Article  ADS  Google Scholar 

  36. B.S. Balakrishna, A.L. Kagan and R.N. Mohapatra, Quark Mixings and Mass Hierarchy From Radiative Corrections, Phys. Lett. B 205 (1988) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Crivellin, L. Hofer, U. Nierste and D. Scherer, Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D 84 (2011) 035030 [arXiv:1105.2818] [INSPIRE].

  38. W. Altmannshofer, C. Frugiuele and R. Harnik, Fermion Hierarchy from Sfermion Anarchy, JHEP 12 (2014) 180 [arXiv:1409.2522] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  40. A.J. Buras, C. Grojean, S. Pokorski and R. Ziegler, FCNC Effects in a Minimal Theory of Fermion Masses, JHEP 08 (2011) 028 [arXiv:1105.3725] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, JHEP 07 (2016) 097 [arXiv:1603.06609] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].

  43. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

  44. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

  45. D.E. Kaplan and T.M.P. Tait, New tools for fermion masses from extra dimensions, JHEP 11 (2001) 051 [hep-ph/0110126] [INSPIRE].

  46. A. Ahmed, A. Carmona, J. Castellano Ruiz, Y. Chung and M. Neubert, Dynamical origin of fermion bulk masses in a warped extra dimension, JHEP 08 (2019) 045 [arXiv:1905.09833] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

  49. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

  50. L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096 [arXiv:1612.05492] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan, Minimal axion model from flavor, Phys. Rev. D 95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].

  53. T. Alanne, S. Blasi and F. Goertz, Common source for scalars: Flavored axion-Higgs unification, Phys. Rev. D 99 (2019) 015028 [arXiv:1807.10156] [INSPIRE].

  54. Q. Bonnefoy, E. Dudas and S. Pokorski, Chiral Froggatt-Nielsen models, gauge anomalies and flavourful axions, JHEP 01 (2020) 191 [arXiv:1909.05336] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Martin Camalich, M. Pospelov, P.N.H. Vuong, R. Ziegler and J. Zupan, Quark Flavor Phenomenology of the QCD Axion, Phys. Rev. D 102 (2020) 015023 [arXiv:2002.04623] [INSPIRE].

  56. M. Bauer, T. Schell and T. Plehn, Hunting the Flavon, Phys. Rev. D 94 (2016) 056003 [arXiv:1603.06950] [INSPIRE].

  57. F. Giese and T. Konstandin, Vacuum stability of Froggatt-Nielsen models, JHEP 12 (2019) 091 [arXiv:1909.04067] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. A. Falkowski, M. Nardecchia and R. Ziegler, Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model, JHEP 11 (2015) 173 [arXiv:1509.01249] [INSPIRE].

    Article  ADS  Google Scholar 

  59. R. Barbieri and R. Ziegler, Quark masses, CKM angles and Lepton Flavour Universality violation, JHEP 07 (2019) 023 [arXiv:1904.04121] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. M. Bordone, O. Catà and T. Feldmann, Effective Theory Approach to New Physics with Flavour: General Framework and a Leptoquark Example, JHEP 01 (2020) 067 [arXiv:1910.02641] [INSPIRE].

  61. D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].

  62. G.F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. R. Alonso, A. Carmona, B.M. Dillon, J.F. Kamenik, J. Martin Camalich and J. Zupan, A clockwork solution to the flavor puzzle, JHEP 10 (2018) 099 [arXiv:1807.09792] [INSPIRE].

    Article  ADS  Google Scholar 

  64. F. Sannino, J. Smirnov and Z.-W. Wang, Asymptotically safe clockwork mechanism, Phys. Rev. D 100 (2019) 075009 [arXiv:1902.05958] [INSPIRE].

  65. A. Smolkovič, M. Tammaro and J. Zupan, Anomaly free Froggatt-Nielsen models of flavor, JHEP 10 (2019) 188 [arXiv:1907.10063] [INSPIRE].

  66. M. Berkooz, Y. Nir and T. Volansky, Baryogenesis from the Kobayashi-Maskawa phase, Phys. Rev. Lett. 93 (2004) 051301 [hep-ph/0401012] [INSPIRE].

  67. L. Calibbi, A. Crivellin and B. Zaldívar, Flavor portal to dark matter, Phys. Rev. D 92 (2015) 016004 [arXiv:1501.07268] [INSPIRE].

  68. I. Baldes, T. Konstandin and G. Servant, A first-order electroweak phase transition from varying Yukawas, Phys. Lett. B 786 (2018) 373 [arXiv:1604.04526] [INSPIRE].

    Article  ADS  Google Scholar 

  69. I. Baldes, T. Konstandin and G. Servant, Flavor Cosmology: Dynamical Yukawas in the Froggatt-Nielsen Mechanism, JHEP 12 (2016) 073 [arXiv:1608.03254] [INSPIRE].

    Article  ADS  Google Scholar 

  70. B. Lillard, M. Ratz, T. Tait, M.P. and S. Trojanowski, The Flavor of Cosmology, JCAP 07 (2018) 056 [arXiv:1804.03662] [INSPIRE].

  71. M.-C. Chen, S. Ipek and M. Ratz, Baryogenesis from Flavon Decays, Phys. Rev. D 100 (2019) 035011 [arXiv:1903.06211] [INSPIRE].

  72. F. Elahi and S.R. Zadeh, Flavon magnetobaryogenesis, Phys. Rev. D 102 (2020) 096018 [arXiv:2008.04434] [INSPIRE].

  73. J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

  75. E. Dudas, S. Pokorski and C.A. Savoy, Yukawa matrices from a spontaneously broken Abelian symmetry, Phys. Lett. B 356 (1995) 45 [hep-ph/9504292] [INSPIRE].

  76. E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].

  77. A. Dery and Y. Nir, FN-2HDM: Two Higgs Doublet Models with Froggatt-Nielsen Symmetry, JHEP 04 (2017) 003 [arXiv:1612.05219] [INSPIRE].

    Article  ADS  Google Scholar 

  78. L.J. Hall and A. Rasin, On the generality of certain predictions for quark mixing, Phys. Lett. B 315 (1993) 164 [hep-ph/9303303] [INSPIRE].

  79. Y. Grossman and J.T. Ruderman, CKM substructure, JHEP 01 (2021) 143 [arXiv:2007.12695] [INSPIRE].

    Article  ADS  Google Scholar 

  80. J. Charles et al., Current status of the Standard Model CKM fit and constraints on ∆F = 2 New Physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].

  81. Utfit collaboration, Unitarity Triangle Analysis and D meson mixing in the Standard Model and Beyond, PoS(EPS-HEP2017)205.

  82. Utfit collaboration, Fit results: Summer 2018, http://www.utfit.org/UTfit/ResultsSummer2018.

  83. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  84. A. Rasin, Diagonalization of quark mass matrices and the Cabibbo-Kobayashi-Maskawa matrix, hep-ph/9708216 [INSPIRE].

  85. H. Fritzsch and Z.-z. Xing, On the parametrization of flavor mixing in the standard model, Phys. Rev. D 57 (1998) 594 [hep-ph/9708366] [INSPIRE].

  86. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in Low-Energy Superstring Models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  88. Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].

  89. L.-L. Chau and W.-Y. Keung, Comments on the Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 53 (1984) 1802 [INSPIRE].

    Article  ADS  Google Scholar 

  90. UTfit collaboration, Model-independent constraints on ∆F = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

  91. S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

    Article  ADS  Google Scholar 

  92. G.-y. Huang and S. Zhou, Precise Values of Running Quark and Lepton Masses in the Standard Model, Phys. Rev. D 103 (2021) 016010 [arXiv:2009.04851] [INSPIRE].

  93. D. Wales and J. Doye, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, J. Phys. Chem. A 101 (1997) 5111 [cond-mat/9803344].

  94. F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  95. iminuit team, iminuit — a python interface to minuit, https://github.com/scikit-hep/iminuit.

  96. A. Hocker and Z. Ligeti, CP violation and the CKM matrix, Ann. Rev. Nucl. Part. Sci. 56 (2006) 501 [hep-ph/0605217] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Departament de Física Quàntica i Astrofísica, Institut de Cìencies del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain

    Marco Fedele

  2. Dipartimento di Matematica e Fisica, Università di Roma Tre, I-00146, Rome, Italy

    Alessio Mastroddi

  3. INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146, Rome, Italy

    Alessio Mastroddi

  4. Department of Physics and Astronomy, University of California, Irvine, CA, 92697-4575, USA

    Mauro Valli

Authors
  1. Marco Fedele
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alessio Mastroddi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mauro Valli
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mauro Valli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.05587

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedele, M., Mastroddi, A. & Valli, M. Minimal Froggatt-Nielsen textures. J. High Energ. Phys. 2021, 135 (2021). https://doi.org/10.1007/JHEP03(2021)135

Download citation

  • Received: 19 September 2020

  • Revised: 30 December 2020

  • Accepted: 03 February 2021

  • Published: 12 March 2021

  • DOI: https://doi.org/10.1007/JHEP03(2021)135

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Gauge Symmetry
  • Global Symmetries
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature