Skip to main content

Two and three pseudoscalar production in e+e annihilation and their contributions to (g − 2)μ

A preprint version of the article is available at arXiv.

Abstract

A coherent study of e+e annihilation into two (π+π, K+K) and three (π+ππ0, π+πη) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E ≲ 2 GeV. The work of [L.Y. Dai, J. Portolés, and O. Shekhovtsova, Phys. Rev. D 88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 ± 7.4) × 1010 (2.9σ) from the experimental value.

References

  1. [1]

    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals phys. 158 (1984) 142 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].

  4. [4]

    G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for massive spin 1 fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].

  5. [5]

    V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich and J. Portoles, Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys. B 753 (2006) 139 [hep-ph/0603205] [INSPIRE].

  6. [6]

    J. Portoles, Basics of resonance chiral theory, AIP Conf. Proc. 1322 (2010) 178 [arXiv:1010.3360] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

  8. [8]

    G. ’t Hooft, A two-dimensional model for mesons, Nucl. Phys. B 75 (1974) 461 [INSPIRE].

  9. [9]

    E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57.

    ADS  Article  Google Scholar 

  10. [10]

    M. Knecht and A. Nyffeler, Resonance estimates of O(p6) low-energy constants and QCD short distance constraints, Eur. Phys. J. C 21 (2001) 659 [hep-ph/0106034] [INSPIRE].

  11. [11]

    P.D. Ruiz-Femenia, A. Pich and J. Portoles, Odd intrinsic parity processes within the resonance effective theory of QCD, JHEP 07 (2003) 003 [hep-ph/0306157] [INSPIRE].

  12. [12]

    V. Cirigliano, G. Ecker, M. Eidemuller, A. Pich and J. Portoles, TheVAPGreen function in the resonance region, Phys. Lett. B 596 (2004) 96 [hep-ph/0404004] [INSPIRE].

  13. [13]

    V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich and J. Portoles, TheSPPGreen function and SU(3) breaking in K(l3) decays, JHEP 04 (2005) 006 [hep-ph/0503108] [INSPIRE].

  14. [14]

    T. Husek and S. Leupold, Two-hadron saturation for the pseudoscalar-vector-vector correlator and phenomenological applications, Eur. Phys. J. C 75 (2015) 586 [arXiv:1507.00478] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    L.-Y. Dai, J. Fuentes-Martín and J. Portolés, Scalar-involved three-point Green functions and their phenomenology, Phys. Rev. D 99 (2019) 114015 [arXiv:1902.10411] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    T. Kadavý, K. Kampf and J. Novotny, OPE of Green functions of chiral currents, JHEP 10 (2020) 142 [arXiv:2006.13006] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    Z.H. Guo, J.J. Sanz Cillero and H.Q. Zheng, Partial waves and large Nc resonance sum rules, JHEP 06 (2007) 030 [hep-ph/0701232] [INSPIRE].

  18. [18]

    M. Jamin, A. Pich and J. Portoles, What can be learned from the belle spectrum for the decay τντKSπ, Phys. Lett. B 664 (2008) 78 [arXiv:0803.1786] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    D.G. Dumm, P. Roig, A. Pich and J. Portoles, Hadron structure in τKKπντ decays, Phys. Rev. D 81 (2010) 034031 [arXiv:0911.2640] [INSPIRE].

  20. [20]

    D.G. Dumm, P. Roig, A. Pich and J. Portoles, τπππντ decays and the a1(1260) off-shell width revisited, Phys. Lett. B 685 (2010) 158 [arXiv:0911.4436] [INSPIRE].

  21. [21]

    Z.-H. Guo and P. Roig, One meson radiative tau decays, Phys. Rev. D 82 (2010) 113016 [arXiv:1009.2542] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    R. Escribano, S. Gonzalez-Solis and P. Roig, τKη(′)ντ decays in chiral perturbation theory with Resonances, JHEP 10 (2013) 039 [arXiv:1307.7908] [INSPIRE].

  23. [23]

    I.M. Nugent, T. Przedzinski, P. Roig, O. Shekhovtsova and Z. Was, Resonance chiral lagrangian currents and experimental data for τπππ+ντ, Phys. Rev. D 88 (2013) 093012 [arXiv:1310.1053] [INSPIRE].

  24. [24]

    J.A. Miranda and P. Roig, New τ-based evaluation of the hadronic contribution to the vacuum polarization piece of the muon anomalous magnetic moment, Phys. Rev. D 102 (2020) 114017 [arXiv:2007.11019] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    Y.-H. Chen, Z.-H. Guo and H.-Q. Zheng, Study of η-ηmixing from radiative decay processes, Phys. Rev. D 85 (2012) 054018 [arXiv:1201.2135] [INSPIRE].

  26. [26]

    C.W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.G. Meißner and A. Wirzba, Towards an improved understanding of ηγ*γ*, arXiv:1509.02194 [INSPIRE].

  27. [27]

    L.-Y. Dai, X.-W. Kang, U.-G. Meißner, X.-Y. Song and D.-L. Yao, Amplitude analysis of the anomalous decay η′ → π+πγ, Phys. Rev. D 97 (2018) 036012 [arXiv:1712.02119] [INSPIRE].

  28. [28]

    S. Dubinsky, A. Korchin, N. Merenkov, G. Pancheri and O. Shekhovtsova, Final-state radiation in electron-positron annihilation into a pion pair, Eur. Phys. J. C 40 (2005) 41 [hep-ph/0411113] [INSPIRE].

  29. [29]

    L.Y. Dai, J. Portoles and O. Shekhovtsova, Three pseudoscalar meson production in e+e annihilation, Phys. Rev. D 88 (2013) 056001 [arXiv:1305.5751] [INSPIRE].

  30. [30]

    F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    S.P. Schneider, B. Kubis and F. Niecknig, The ωπ0γ* and ϕπ0γ* transition form factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].

  32. [32]

    I.V. Danilkin et al., Dispersive analysis of ω/ϕ → 3π, πγ*, Phys. Rev. D 91 (2015) 094029 [arXiv:1409.7708] [INSPIRE].

  33. [33]

    M. Albaladejo and B. Moussallam, Extended chiral khuri-Treiman formalism for η → 3π and the role of the a0(980), f0(980) resonances, Eur. Phys. J. C 77 (2017) 508 [arXiv:1702.04931] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    T. Isken, B. Kubis, S.P. Schneider and P. Stoffer, Dispersion relations for η′ → ηππ, Eur. Phys. J. C 77 (2017) 489 [arXiv:1705.04339] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, Dispersive analysis of η → 3π, Eur. Phys. J. C 78 (2018) 947 [arXiv:1807.11937] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    D.-L. Yao, L.-Y. Dai, H.-Q. Zheng and Z.-Y. Zhou, A review on partial-wave dynamics with chiral effective field theory and dispersion relation, arXiv:2009.13495 [INSPIRE].

  37. [37]

    muon g-2 collaboration, Final report of the muon E821 Anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  38. [38]

    particle data group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  39. [39]

    T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

  40. [40]

    F. Jegerlehner, The anomalous magnetic moment of the muon, Springer, Germany (2017) [INSPIRE].

    Book  Google Scholar 

  41. [41]

    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED Contribution to the muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    T. Aoyama, T. Kinoshita and M. Nio, Theory of the anomalous magnetic Moment of the electron, Atoms 7 (2019) 28 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    R. Jackiw and S. Weinberg, Weak interaction corrections to the muon magnetic moment and to muonic atom energy levels, Phys. Rev. D 5 (1972) 2396 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    M. Knecht, S. Peris, M. Perrottet and E. De Rafael, Electroweak hadronic contributions to the muon (g − 2), JHEP 11 (2002) 003 [hep-ph/0205102] [INSPIRE].

  45. [45]

    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  46. [46]

    C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].

  47. [47]

    J. Prades, E. de Rafael and A. Vainshtein, The hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic moments, Adv. Ser. Direct. High energy phys. 20 (2009) 303 [arXiv:0901.0306] [INSPIRE].

  48. [48]

    G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    I. Danilkin, O. Deineka and M. Vanderhaeghen, Dispersive analysis of the γ*γ*ππ process, Phys. Rev. D 101 (2020) 054008 [arXiv:1909.04158] [INSPIRE].

  50. [50]

    T. Blum et al., Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with a physical pion mass, Phys. Rev. Lett. 118 (2017) 022005 [arXiv:1610.04603] [INSPIRE].

  51. [51]

    T. Blum et al., Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment, Phys. Rev. D 96 (2017) 034515 [arXiv:1705.01067] [INSPIRE].

  52. [52]

    N. Asmussen et al., Developments in the position-space approach to the HLbL contribution to the muon g − 2 on the lattice, PoS(LATTICE2019)195 [arXiv:1911.05573] [INSPIRE].

  53. [53]

    Sz. Borsanyi et al., Leading hadronic contribution to the muon 2 magnetic moment from lattice QCD, arXiv:2002.12347.

  54. [54]

    L.-Y. Dai and M.R. Pennington, Two photon couplings of the lightest isoscalars from BELLE data, Phys. Lett. B 736 (2014) 11 [arXiv:1403.7514] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    L.-Y. Dai and M.R. Pennington, Comprehensive amplitude analysis of γγπ+π, π0π0 and \( \overline{K}K \) below 1.5 GeV, Phys. Rev. D 90 (2014) 036004 [arXiv:1404.7524] [INSPIRE].

  56. [56]

    L.-Y. Dai and M.R. Pennington, Pion polarizabilities from γγππ analysis, Phys. Rev. D 94 (2016) 116021 [arXiv:1611.04441] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    L.-Y. Dai and M.R. Pennington, Pascalutsa-Vanderhaeghen light-by-light sum rule from photon-photon collisions, Phys. Rev. D 95 (2017) 056007 [arXiv:1701.04460] [INSPIRE].

  58. [58]

    H. Terazawa, All the hadronic contributions to the anomalous magnetic moment of the muon and the lamb shift in the hydrogen atom, Prog. Theor. Phys. 39 (1968) 1326 [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    H. Terazawa, Spectral function of the photon propagator-mass spectrum and timelike form-factors of particles, Phys. Rev. 177 (1969) 2159 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({m}_Z^2\right) \), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

  61. [61]

    A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, \( \alpha \left({M}_Z^2\right) \), and the hyperfine splitting of muonium, Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].

  62. [62]

    A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    V.M. Aul’chenko et al., Study of the e+eπ+ππ0 process in the energy range 1.052.00 GeV, J. Exp. Theor. Phys. 121 (2015) 27 [Zh. Eksp. Teor. Fiz. 148 (2015) 34] [INSPIRE].

  64. [64]

    BESIII collaboration, Measurement of the e+eπ+ππ0 Cross section from 0.7 GeV to 3.0 GeV via Initial-State radiation, arXiv:1912.11208 [INSPIRE].

  65. [65]

    SND collaboration, Measurement of the e+eηπ+π cross section in the center-of-mass energy range 1.222.00 GeV with the SND detector at the VEPP-2000 collider, Phys. Rev. D 91 (2015) 052013 [arXiv:1412.1971] [INSPIRE].

  66. [66]

    M.N. Achasov et al., Measurement of the e+eηπ+π cross section with the SND detector at the VEPP-2000 collider, Phys. Rev. D 97 (2018) 012008 [arXiv:1711.08862] [INSPIRE].

  67. [67]

    S.S. Gribanov et al., Measurement of the e+eηπ+π cross section with the CMD-3 detector at the VEPP-2000 collider, JHEP 01 (2020) 112 [arXiv:1907.08002] [INSPIRE].

  68. [68]

    BESIII collaboration, Measurement of the born cross sections for e+eηπ+π at center-of-mass energies between 2.00 and 3.08 GeV, arXiv:2012.07360 [INSPIRE].

  69. [69]

    baBar collaboration, Precise measurement of the e+eπ+π(γ) cross section with the initial-state radiation method at BABAR, Phys. Rev. D 86 (2012) 032013 [arXiv:1205.2228] [INSPIRE].

  70. [70]

    KLOE collaboration, Measurement of σ(e+eπ+πγ(γ) and the dipion contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 670 (2009) 285 [arXiv:0809.3950] [INSPIRE].

  71. [71]

    KLOE collaboration, Measurement of σ(e+eπ+π) from threshold to 0.85 GeV2 using initial state radiation with the KLOE detector, Phys. Lett. B 700 (2011) 102 [arXiv:1006.5313] [INSPIRE].

  72. [72]

    KLOE collaboration, Precision measurement of σ(e+eπ+πγ)(e+eμ+μγ) and determination of the π+π contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 720 (2013) 336 [arXiv:1212.4524] [INSPIRE].

  73. [73]

    KLOE-2 collaboration, Combination of KLOE σ(e+eπ+πγ(γ)) measurements and determination of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}} \) in the energy range 0.10 < s < 0.95 GeV2, JHEP 03 (2018) 173 [arXiv:1711.03085] [INSPIRE].

  74. [74]

    SND collaboration, Measurement of the e+eπ+π process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525 < \( \sqrt{s} \) < 0.883 GeV, JHEP 01 (2021) 113 [arXiv:2004.00263] [INSPIRE].

  75. [75]

    BESIII collaboration, Measurement of the e+eπ+π cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [Erratum ibid. 812 (2021) 135982] [arXiv:1507.08188] [INSPIRE].

  76. [76]

    T. Xiao, S. Dobbs, A. Tomaradze, K.K. Seth and G. Bonvicini, Precision measurement of the hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. D 97 (2018) 032012 [arXiv:1712.04530] [INSPIRE].

  77. [77]

    CMD-2 collaboration, Measurement of the pion form-factor in the range 1.04 GeV to 1.38 GeV with the CMD-2 detector, JETP Lett. 82 (2005) 743 [Pisma Zh. Eksp. Teor. Fiz. 82 (2005) 841] [hep-ex/0603021] [INSPIRE].

  78. [78]

    V.M. Aul’chenko et al., Measurement of the e+eπ+π cross section with the CMD-2 detector in the 370520 MeV c.m. energy range, JETP Lett. 84 (2006) 413 [hep-ex/0610016] [INSPIRE].

  79. [79]

    CMD-2 collaboration, High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector, Phys. Lett. B 648 (2007) 28 [hep-ex/0610021] [INSPIRE].

  80. [80]

    DM2 collaboration, The pion electromagnetic form-factor in the timelike energy range 1.35-{GeV}\( \sqrt{s} \)2.4-{GeV}, Phys. Lett. B 220 (1989) 321 [INSPIRE].

  81. [81]

    L.M. Barkov et al., Electromagnetic pion form-factor in the timelike region, Nucl. Phys. B 256 (1985) 365 [INSPIRE].

  82. [82]

    M.N. Achasov et al., Measurements of the parameters of the ϕ(1020) resonance through studies of the processes e+eK+K, KSKL, and π+ππ0, Phys. Rev. D 63 (2001) 072002 [hep-ex/0009036] [INSPIRE].

  83. [83]

    M.N. Achasov et al., Measurement of the e+eK+K process cross-section in the energy range \( \sqrt{s} \) = 1.041.38 GeV with the SND detector in the experiment at VEPP-2M e+e collider, Phys. Rev. D 76 (2007) 072012 [arXiv:0707.2279] [INSPIRE].

  84. [84]

    M.N. Achasov et al., Measurement of the e+eK+K cross section in the energy range \( \sqrt{s} \) = 1.05–2.0 GeV, Phys. Rev. D 94 (2016) 112006 [arXiv:1608.08757] [INSPIRE].

  85. [85]

    BESIII collaboration, Measurement of e+eK+K cross section at \( \sqrt{s} \) = 2.003.08 GeV, Phys. Rev. D 99 (2019) 032001 [arXiv:1811.08742] [INSPIRE].

  86. [86]

    baBar collaboration, Precision measurement of the e+eK+K(γ) cross section with the initial-state radiation method at BABAR, Phys. Rev. D 88 (2013) 032013 [arXiv:1306.3600] [INSPIRE].

  87. [87]

    CMD-2 collaboration, Measurement of e+eϕK+K cross section with the CMD-2 detector at VEPP-2M Collider, Phys. Lett. B 669 (2008) 217 [arXiv:0804.0178] [INSPIRE].

  88. [88]

    E.A. Kozyrev et al., Study of the process e+eK+K in the center-of-mass energy range 1010–1060 MeV with the CMD-3 detector, Phys. Lett. B 779 (2018) 64 [arXiv:1710.02989] [INSPIRE].

  89. [89]

    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. [90]

    J. Wess and B. Zumino, Consequences of anomalous ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  91. [91]

    J. Gasser and H. Leutwyler, Quark masses, Phys. Rept. 87 (1982) 77 [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    E. Arganda, M.J. Herrero and J. Portoles, Lepton flavour violating semileptonic tau decays in constrained MSSM-seesaw scenarios, JHEP 06 (2008) 079 [arXiv:0803.2039] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    F. Guerrero and A. Pich, Effective field theory description of the pion form-factor, Phys. Lett. B 412 (1997) 382 [hep-ph/9707347] [INSPIRE].

  94. [94]

    A. Pich and J. Portoles, The vector form-factor of the pion from unitarity and analyticity: a model independent approach, Phys. Rev. D 63 (2001) 093005 [hep-ph/0101194] [INSPIRE].

  95. [95]

    J.A. Miranda and P. Roig, Effective-field theory analysis of the τππ0ντ decays, JHEP 11 (2018) 038 [arXiv:1806.09547] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    D. Gomez Dumm, A. Pich and J. Portoles, The hadronic off-shell width of meson resonances, Phys. Rev. D 62 (2000) 054014 [hep-ph/0003320] [INSPIRE].

  97. [97]

    A. Cordier et al., Cross-section of the reaction e+eπ+ππ0 for center-of-mass energies from 750 MeV to 1100 MeV, Nucl. Phys. B 172 (1980) 13.

    ADS  Article  Google Scholar 

  98. [98]

    S.I. Dolinsky et al., Summary of experiments with the neutral detector at the e+e storage ring VEPP-2M, Phys. Rept. 202 (1991) 99 [INSPIRE].

  99. [99]

    DM2 collaboration, Measurement of the e+eπ+ππ0 and e+eωπ+π reactions in the energy interval 1350 MeV–2400 MeV, Z. Phys. C 56 (1992) 15 [INSPIRE].

  100. [100]

    CMD-2 collaboration, Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B 578 (2004) 285 [hep-ex/0308008] [INSPIRE].

  101. [101]

    R.R. Akhmetshin et al., Study of dynamics of ϕπ+ππ0 decay with CMD-2 detector, Phys. Lett. B 434 (1998) 426 [INSPIRE].

  102. [102]

    CMD-2 collaboration, Measurement of omega meson parameters in pi+ pi- pi0 decay mode with CMD-2, Phys. Lett. B 476 (2000) 33 [hep-ex/0002017] [INSPIRE].

  103. [103]

    M.N. Achasov et al., Study of the process e+eπ+ππ0 in the energy region \( \sqrt{s} \) below 0.98 GeV, Phys. Rev. D 68 (2003) 052006 [hep-ex/0305049] [INSPIRE].

  104. [104]

    M.N. Achasov et al., Study of the process e+eπ+ππ0 in the energy region \( \sqrt{s} \) from 0.98 GeV to 1.38 GeV, Phys. Rev. D 66 (2002) 032001 [hep-ex/0201040] [INSPIRE].

  105. [105]

    baBar collaboration, Study of e+eπ+ππ0 process using initial state radiation with BaBar, Phys. Rev. D 70 (2004) 072004 [hep-ex/0408078] [INSPIRE].

  106. [106]

    DM2 collaboration, Measurement of the reaction e+eηπ+π in the center-of-mass energy interval 1350 MeV to 2400 MeV, Phys. Lett. B 212 (1988) 133 [INSPIRE].

  107. [107]

    CMD-2 collaboration, Study of the process e+eπ+ππ+ππ0 with CMD-2 detector, Phys. Lett. B 489 (2000) 125 [hep-ex/0009013] [INSPIRE].

  108. [108]

    baBar collaboration, The e+e → 2(π+π)π0, 2(π+π)η, K+Kπ+ππ0 and K+Kπ+πη cross sections measured with initial-State radiation, Phys. Rev. D 76 (2007) 092005 [Erratum ibid. 77 (2008) 119902] [arXiv:0708.2461] [INSPIRE].

  109. [109]

    M.N. Achasov et al., Hadronic cross section measurements at SND, Int. J. Mod. Phys. Conf. Ser. 35 (2014) 1460388 [INSPIRE].

  110. [110]

    F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].

    ADS  Article  Google Scholar 

  111. [111]

    B. Moussallam, Chiral sum rules for parameters of the order six Lagrangian in the W-Z sector and application to pi0, eta, eta-prime decays, Phys. Rev. D 51 (1995) 4939 [hep-ph/9407402] [INSPIRE].

  112. [112]

    B. Moussallam, A sum rule approach to the violation of Dashen’s theorem, Nucl. Phys. B 504 (1997) 381 [hep-ph/9701400] [INSPIRE].

  113. [113]

    M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Decay of pseudoscalars into lepton pairs and large Nc QCD, Phys. Rev. Lett. 83 (1999) 5230 [hep-ph/9908283] [INSPIRE].

  114. [114]

    J. Bijnens, E. Gamiz, E. Lipartia and J. Prades, QCD short distance constraints and hadronic approximations, JHEP 04 (2003) 055 [hep-ph/0304222] [INSPIRE].

  115. [115]

    M. Gourdin and E. De Rafael, Hadronic contributions to the muon g-factor, Nucl. Phys. B 10 (1969) 667 [INSPIRE].

  116. [116]

    G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].

    ADS  Article  Google Scholar 

  118. [118]

    B. Krause, Higher order hadronic contributions to the anomalous magnetic moment of leptons, Phys. Lett. B 390 (1997) 392 [hep-ph/9607259] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ling-Yun Dai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.09618

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Dai, LY. & Portolés, J. Two and three pseudoscalar production in e+e annihilation and their contributions to (g − 2)μ. J. High Energ. Phys. 2021, 92 (2021). https://doi.org/10.1007/JHEP03(2021)092

Download citation

Keywords

  • Phenomenological Models
  • QCD Phenomenology