Abstract
Inspired by Lefschetz thimble theory, we treat Quantum Field Theory as a statistical theory with a complex Probability Distribution Function (PDF). Such complex-valued PDFs permit the violation of Bell-type inequalities, which cannot be violated by a real-valued, non-negative PDF. In this paper, we consider the Classical-Statistical approximation in the context of Bell-type inequalities, viz. the familiar (spatial) Bell inequalities and the temporal Leggett-Garg inequalities. We show that the Classical-Statistical approximation does not violate temporal Bell-type inequalities, even though it is in some sense exact for a free theory, whereas the full quantum theory does. We explain the origin of this discrepancy, and point out the key difference between the spatial and temporal Bell-type inequalities. We comment on the import of this work for applications of the Classical-Statistical approximation.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J. S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].
L. V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].
J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics Physique Fizika 1 (1964) 195 [INSPIRE].
A. J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?, Phys. Rev. Lett. 54 (1985) 857 [INSPIRE].
J. Klauder and B. Skagerstam, Coherent states — applications in physics and mathematical physics, World Scientific, Singapore (1985).
V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].
C. Greiner and B. Müller, Classical fields near thermal equilibrium, Phys. Rev. D 55 (1997) 1026 [hep-th/9605048] [INSPIRE].
G. D. Moore and N. Turok, Classical field dynamics of the electroweak phase transition, Phys. Rev. D 55 (1997) 6538 [hep-ph/9608350] [INSPIRE].
G. Aarts and J. Smit, Classical approximation for time dependent quantum field theory: diagrammatic analysis for hot scalar fields, Nucl. Phys. B 511 (1998) 451 [hep-ph/9707342] [INSPIRE].
A. Rajantie, P. M. Saffin and E. J. Copeland, Electroweak preheating on a lattice, Phys. Rev. D 63 (2001) 123512 [hep-ph/0012097] [INSPIRE].
F. Cooper, A. Khare and H. Rose, Classical limit of time dependent quantum field theory: a Schwinger-Dyson approach, Phys. Lett. B 515 (2001) 463 [hep-ph/0106113] [INSPIRE].
G. Aarts and J. Berges, Classical aspects of quantum fields far from equilibrium, Phys. Rev. Lett. 88 (2002) 041603 [hep-ph/0107129] [INSPIRE].
J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [INSPIRE].
J. Smit and A. Tranberg, Chern-Simons number asymmetry from CP-violation at electroweak tachyonic preheating, JHEP 12 (2002) 020 [hep-ph/0211243] [INSPIRE].
A. Arrizabalaga, J. Smit and A. Tranberg, Tachyonic preheating using 2P I − 1/N dynamics and the classical approximation, JHEP 10 (2004) 017 [hep-ph/0409177] [INSPIRE].
A. Rajantie and A. Tranberg, Looking for defects in the 2P I correlator, JHEP 11 (2006) 020 [hep-ph/0607292] [INSPIRE].
J. Berges and T. Gasenzer, Quantum versus classical statistical dynamics of an ultracold Bose gas, Phys. Rev. A 76 (2007) 033604 [cond-mat/0703163] [INSPIRE].
J. Berges and S. Roth, Topological defect formation from 2P I effective action techniques, Nucl. Phys. B 847 (2011) 197 [arXiv:1012.1212] [INSPIRE].
M. Revzen, P. A. Mello, A. Mann and L. M. Johansen, Bell’s inequality violation with non-negative Wigner functions, Phys. Rev. A 71 (2005) 022103 [quant-ph/0405100].
J. Berges, S. Borsányi, D. Sexty and I.-O. Stamatescu, Lattice simulations of real-time quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].
A. Kamenev and A. Levchenko, Keldysh technique and nonlinear sigma-model: basic principles and applications, Adv. Phys. 58 (2009) 197 [arXiv:0901.3586] [INSPIRE].
T. Fritz, Quantum correlations in the temporal Clauser-Horne-Shimony-Holt (CHSH) scenario, New J. Phys. 12 (2010) 083055 [arXiv:1005.3421].
E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].
T. Epelbaum, F. Gelis and B. Wu, Nonrenormalizability of the classical statistical approximation, Phys. Rev. D 90 (2014) 065029 [arXiv:1402.0115] [INSPIRE].
Y. Tanizaki and T. Koike, Real-time Feynman path integral with Picard-Lefschetz theory and its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386] [INSPIRE].
A. Cherman and M. Ünsal, Real-time Feynman path integral realization of instantons, arXiv:1408.0012 [INSPIRE].
S. Bose, D. Home and S. Mal, Nonclassicality of the harmonic-oscillator coherent state persisting up to the macroscopic domain, Phys. Rev. Lett. 120 (2018) 210402 [arXiv:1509.00196].
A. Alexandru, G. Basar, P. F. Bedaque, S. Vartak and N. C. Warrington, Monte Carlo study of real time dynamics on the lattice, Phys. Rev. Lett. 117 (2016) 081602 [arXiv:1605.08040] [INSPIRE].
A. Alexandru, G. Basar, P. F. Bedaque and G. W. Ridgway, Schwinger-Keldysh formalism on the lattice: a faster algorithm and its application to field theory, Phys. Rev. D 95 (2017) 114501 [arXiv:1704.06404] [INSPIRE].
J. Martin and V. Vennin, Obstructions to Bell CMB experiments, Phys. Rev. D 96 (2017) 063501 [arXiv:1706.05001] [INSPIRE].
Z.-G. Mou, P. M. Saffin, A. Tranberg and S. Woodward, Real-time quantum dynamics, path integrals and the method of thimbles, JHEP 06 (2019) 094 [arXiv:1902.09147] [INSPIRE].
Z.-G. Mou, P. M. Saffin and A. Tranberg, Quantum tunnelling, real-time dynamics and Picard-Lefschetz thimbles, JHEP 11 (2019) 135 [arXiv:1909.02488] [INSPIRE].
W.-Y. Ai, B. Garbrecht and C. Tamarit, Functional methods for false vacuum decay in real time, JHEP 12 (2019) 095 [arXiv:1905.04236] [INSPIRE].
M. P. Hertzberg and M. Yamada, Vacuum decay in real time and imaginary time formalisms, Phys. Rev. D 100 (2019) 016011 [arXiv:1904.08565] [INSPIRE].
M. Headrick, Lectures on entanglement entropy in field theory and holography, arXiv:1907.08126 [INSPIRE].
A. Alexandru, G. Basar, P. F. Bedaque and N. C. Warrington, Complex paths around the sign problem, arXiv:2007.05436 [INSPIRE].
M. P. Hertzberg, F. Rompineve and N. Shah, Quantitative analysis of the stochastic approach to quantum tunneling, Phys. Rev. D 102 (2020) 076003 [arXiv:2009.00017] [INSPIRE].
J. Braden, M. C. Johnson, H. V. Peiris, A. Pontzen and S. Weinfurtner, New semiclassical picture of vacuum decay, Phys. Rev. Lett. 123 (2019) 031601 [arXiv:1806.06069] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2011.02657
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Millington, P., Mou, ZG., Saffin, P.M. et al. Statistics on Lefschetz thimbles: Bell/Leggett-Garg inequalities and the classical-statistical approximation. J. High Energ. Phys. 2021, 77 (2021). https://doi.org/10.1007/JHEP03(2021)077
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2021)077