Skip to main content

Advertisement

SpringerLink
Five-dimensional non-Lorentzian conformal field theories and their relation to six-dimensions
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 04 March 2021

Five-dimensional non-Lorentzian conformal field theories and their relation to six-dimensions

  • N. Lambert1,
  • A. Lipstein  ORCID: orcid.org/0000-0002-0213-186X2,
  • R. Mouland1 &
  • …
  • P. Richmond1 

Journal of High Energy Physics volume 2021, Article number: 53 (2021) Cite this article

  • 139 Accesses

  • 6 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study correlation functions in five-dimensional non-Lorentzian theories with an SU(1, 3) conformal symmetry. Examples of such theories have recently been obtained as Ω-deformed Yang-Mills Lagrangians arising from a null reduction of six-dimensional superconformal field theories on a conformally compactified Minkowski space. The correlators exhibit a rich structure with many novel properties compared to conventional correlators in Lorentzian conformal field theories. Moreover, identifying the instanton number with the Fourier mode number of the dimensional reduction offers a hope to formulate six-dimensional conformal field theories in terms of five-dimensional Lagrangian theories. To this end we show that the Fourier decompositions of six-dimensional correlation functions solve the Ward identities of the SU(1, 3) symmetry, although more general solutions are possible. Conversely we illustrate how one can reconstruct six-dimensional correlation functions from those of a five-dimensional theory, and do so explicitly at 2- and 3-points. We also show that, in a suitable decompactification limit Ω → 0, the correlation functions become those of the DLCQ description.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. Bagger and N. Lambert, Modeling Multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Lambert, A. Lipstein and P. Richmond, Non-Lorentzian M5-brane Theories from Holography, JHEP 08 (2019) 060 [arXiv:1904.07547] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. N. Lambert, A. Lipstein, R. Mouland and P. Richmond, Bosonic symmetries of (2, 0) DLCQ field theories, JHEP 01 (2020) 166 [arXiv:1912.02638] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Lambert, (2, 0) Lagrangian Structures, Phys. Lett. B 798 (2019) 134948 [arXiv:1908.10752] [INSPIRE].

  8. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Instanton Operators in Five-Dimensional Gauge Theories, JHEP 03 (2015) 019 [arXiv:1412.2789] [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].

  10. O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  11. O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. M. R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. H.-C. Kim and K. Lee, Supersymmetric M5 Brane Theories on R x CP2, JHEP 07 (2013) 072 [arXiv:1210.0853] [INSPIRE].

    Article  ADS  Google Scholar 

  15. N. Arkani-Hamed, A. G. Cohen, D. B. Kaplan, A. Karch and L. Motl, Deconstructing (2, 0) and little string theories, JHEP 01 (2003) 083 [hep-th/0110146] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Lambert and T. Orchard, Non-Lorentzian Avatars of (1, 0) Theories, arXiv:2011.06968 [INSPIRE].

  17. F. Bastianelli, S. Frolov and A. A. Tseytlin, Three point correlators of stress tensors in maximally supersymmetric conformal theories in D = 3 and D = 6, Nucl. Phys. B 578 (2000) 139 [hep-th/9911135] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Bastianelli and R. Zucchini, Three point functions for a class of chiral operators in maximally supersymmetric CFT at large N , Nucl. Phys. B 574 (2000) 107 [hep-th/9909179] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Eden, S. Ferrara and E. Sokatchev, (2, 0) superconformal OPEs in D = 6, selection rules and nonrenormalization theorems, JHEP 11 (2001) 020 [hep-th/0107084] [INSPIRE].

  20. G. Arutyunov and E. Sokatchev, Implications of superconformal symmetry for interacting (2, 0) tensor multiplets, Nucl. Phys. B 635 (2002) 3 [hep-th/0201145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. P. J. Heslop, Aspects of superconformal field theories in six dimensions, JHEP 07 (2004) 056 [hep-th/0405245] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Beem, M. Lemos, L. Rastelli and B. C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Rastelli and X. Zhou, Holographic Four-Point Functions in the (2, 0) Theory, JHEP 06 (2018) 087 [arXiv:1712.02788] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Heslop and A. E. Lipstein, M-theory Beyond The Supergravity Approximation, JHEP 02 (2018) 004 [arXiv:1712.08570] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. S. M. Chester and E. Perlmutter, M-Theory Reconstruction from (2, 0) CFT and the Chiral Algebra Conjecture, JHEP 08 (2018) 116 [arXiv:1805.00892] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Beem, L. Rastelli and B. C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. S. M. Chester, AdS4/CFT3 for unprotected operators, JHEP 07 (2018) 030 [arXiv:1803.01379] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. M. Chester, S. S. Pufu and X. Yin, The M-theory S-matrix From ABJM: Beyond 11D Supergravity, JHEP 08 (2018) 115 [arXiv:1804.00949] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. L. F. Alday, S. M. Chester and H. Raj, 6d (2, 0) and M-theory at 1-loop, JHEP 01 (2021) 133 [arXiv:2005.07175] [INSPIRE].

  30. M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Statist. Phys. 75 (1994) 1023 [hep-th/9310081] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Henkel and J. Unterberger, Supersymmetric extensions of Schrödinger-invariance, Nucl. Phys. B 746 (2006) 155 [math-ph/0512024] [INSPIRE].

  32. B. Chen, P.-X. Hao, R. Liu and Z.-F. Yu, On Galilean conformal bootstrap, arXiv:2011.11092 [INSPIRE].

  33. N. Nakanishi and K. Yamawaki, A Consistent Formulation of the Null-Plane Quantum Field Theory, Nucl. Phys. B 122 (1977) 15 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. A. L. Fitzpatrick, J. Kaplan, E. Katz, L. G. Vitale and M. T. Walters, Lightcone effective Hamiltonians and RG flows, JHEP 08 (2018) 120 [arXiv:1803.10793] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. C. N. Pope, A. Sadrzadeh and S. R. Scuro, Timelike Hopf duality and type IIA∗ string solutions, Class. Quant. Grav. 17 (2000) 623 [hep-th/9905161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. N. Lambert and M. Owen, Non-Lorentzian Field Theories with Maximal Supersymmetry and Moduli Space Dynamics, JHEP 10 (2018) 133 [arXiv:1808.02948] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Mouland, Supersymmetric soliton σ-models from non-Lorentzian field theories, JHEP 04 (2020) 129 [arXiv:1911.11504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Drukker, S. Giombi, A. A. Tseytlin and X. Zhou, Defect CFT in the 6d (2, 0) theory from M2 brane dynamics in AdS7 × S4, JHEP 07 (2020) 101 [arXiv:2004.04562] [INSPIRE].

  39. N. Drukker, M. Probst and M. Trépanier, Defect CFT techniques in the 6d \( \mathcal{N} \) = (2, 0) theory, arXiv:2009.10732 [INSPIRE].

  40. N. Lambert, A. Lipstein, R. Mouland and P. Richmond, to appear.

  41. N. Seiberg and S.-H. Shao, Exotic Symmetries, Duality, and Fractons in 2 + 1-Dimensional Quantum Field Theory, SciPost Phys. 10 (2021) 027 [arXiv:2003.10466] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Moroz and D. T. Son, Bosonic Superfluid on the Lowest Landau Level, Phys. Rev. Lett. 122 (2019) 235301 [arXiv:1901.06088] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Orlando, V. Pellizzani and S. Reffert, Near-Schrödinger dynamics at large charge, arXiv:2010.07942 [INSPIRE].

  44. S. Hellerman and I. Swanson, Droplet-Edge Operators in Nonrelativistic Conformal Field Theories, arXiv:2010.07967 [INSPIRE].

  45. C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

  46. S. Baiguera, T. Harmark and N. Wintergerst, Nonrelativistic near-BPS corners of \( \mathcal{N} \) = 4 super-Yang-Mills with SU(1, 1) symmetry, arXiv:2009.03799 [INSPIRE].

  47. N. Bobev, P. Bomans and F. F. Gautason, Comments on chiral algebras and Ω-deformations, arXiv:2010.02267 [INSPIRE].

  48. T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, King’s College London, The Strand, London, WC2R 2LS, U.K.

    N. Lambert, R. Mouland & P. Richmond

  2. Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, U.K.

    A. Lipstein

Authors
  1. N. Lambert
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Lipstein
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. R. Mouland
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. P. Richmond
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Lipstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.00626

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambert, N., Lipstein, A., Mouland, R. et al. Five-dimensional non-Lorentzian conformal field theories and their relation to six-dimensions. J. High Energ. Phys. 2021, 53 (2021). https://doi.org/10.1007/JHEP03(2021)053

Download citation

  • Received: 18 December 2020

  • Accepted: 25 January 2021

  • Published: 04 March 2021

  • DOI: https://doi.org/10.1007/JHEP03(2021)053

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • M-Theory
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.