Skip to main content

Vector mesons on the wall

A preprint version of the article is available at arXiv.

Abstract

A domain-wall configuration of the η′ meson bounded by a string (called a pancake or a Hall droplet) is recently proposed to describe the baryons with spin Nc/2. In order to understand its baryon number as well as the flavor quantum number, we argue that the vector mesons (the ρ and ω mesons) should play an essential role for the consistency of the whole picture. We determine the effective theory of large-Nc QCD with Nf massless fermions by taking into account a mixed anomaly involving the θ-periodicity and the global symmetry. The anomaly matching requires the presence of a dynamical domain wall on which a \( \mathrm{U}{\left({N}_f\right)}_{-{N}_c} \) Chern-Simons theory is supported. We consider the boundary conditions that should be imposed on the edge of the domain wall, and conclude that there should be a boundary term that couples the \( \mathrm{U}{\left({N}_f\right)}_{-{N}_c} \) gauge field to the vector mesons. We discuss the impact on physics of the chiral phase transition and the relation to the “duality” of QCD.

References

  1. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].

  2. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

  5. E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160 (1979) 57.

    ADS  Article  Google Scholar 

  8. E. Witten, Current algebra, baryons, and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. T. Skyrme, A non-linear field theory, Proc. R. Soc. London. Ser. A. 260 (1961) 127.

    ADS  MathSciNet  Article  Google Scholar 

  10. A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in three dimensions and group cohomology, Phys. Rev. Lett. 112 (2014) 231602 [arXiv:1403.0617] [INSPIRE].

    ADS  Article  Google Scholar 

  11. A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].

    ADS  Article  Google Scholar 

  12. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal, and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. P.-S. Hsin, H. T. Lam and N. Seiberg, Comments on one-form global symmetries and their gauging in 3d and 4d, SciPost Phys. 6 (2019) 039 [arXiv:1812.04716] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. R. Kitano, T. Suyama and N. Yamada, θ = π in SU(N)/ℤN gauge theories, JHEP 09 (2017) 137 [arXiv:1709.04225] [INSPIRE].

  16. C. Córdova, D. S. Freed, H. T. Lam and N. Seiberg, Anomalies in the Space of Coupling Constants and Their Dynamical Applications I, SciPost Phys. 8 (2020) 001 [arXiv:1905.09315] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. C. Córdova, D. S. Freed, H. T. Lam and N. Seiberg, Anomalies in the Space of Coupling Constants and Their Dynamical Applications II, SciPost Phys. 8 (2020) 002 [arXiv:1905.13361] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. Z. Komargodski, Baryons as quantum Hall droplets, arXiv:1812.09253 [INSPIRE].

  19. Y.-L. Ma, M. A. Nowak, M. Rho and I. Zahed, Baryon as a quantum Hall droplet and the Cheshire cat principle, Phys. Rev. Lett. 123 (2019) 172301 [arXiv:1907.00958] [INSPIRE].

    ADS  Article  Google Scholar 

  20. A. Karasik, Skyrmions, quantum Hall droplets, and one current to rule them all, SciPost Phys. 9 (2020) 008 [arXiv:2003.07893] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. A. Karasik, Vector dominance, one flavored baryons, and QCD domain walls from the “hidden” Wess-Zumino term, arXiv:2010.10544 [INSPIRE].

  22. N. Kan, R. Kitano, S. Yankielowicz and R. Yokokura, From 3d dualities to hadron physics, Phys. Rev. D 102 (2020) 125034 [arXiv:1909.04082] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. Y.-L. Ma and M. Rho, Dichotomy of baryons as quantum Hall droplets and skyrmions in compact-star matter, arXiv:2009.09219 [INSPIRE].

  24. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    ADS  Article  Google Scholar 

  25. N. Seiberg, The power of duality: exact results in 4D SUSY field theory, Int. J. Mod. Phys. A 16 (2001) 4365 [hep-th/9506077] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. M. Harada and K. Yamawaki, Conformal phase transition and fate of the hidden local symmetry in large N (f) QCD, Phys. Rev. Lett. 83 (1999) 3374 [hep-ph/9906445] [INSPIRE].

    ADS  Article  Google Scholar 

  27. Z. Komargodski, Vector mesons and an interpretation of Seiberg duality, JHEP 02 (2011) 019 [arXiv:1010.4105] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. R. Kitano, Hidden local symmetry and color confinement, JHEP 11 (2011) 124 [arXiv:1109.6158] [INSPIRE].

    ADS  Article  Google Scholar 

  29. S. Abel and J. Barnard, Seiberg duality versus hidden local symmetry, JHEP 05 (2012) 044 [arXiv:1202.2863] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. R. Kitano, M. Nakamura and N. Yokoi, Making confining strings out of mesons, Phys. Rev. D 86 (2012) 014510 [arXiv:1202.3260] [INSPIRE].

    ADS  Article  Google Scholar 

  31. R. Kitano and N. Yokoi, Quark confinement via magnetic color-flavor locking, JHEP 11 (2013) 129 [arXiv:1308.0093] [INSPIRE].

    ADS  Article  Google Scholar 

  32. M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].

    ADS  Article  Google Scholar 

  33. T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawaki, Nonabelian anomaly and vector mesons as dynamical gauge bosons of hidden local symmetries, Prog. Theor. Phys. 73 (1985) 926 [INSPIRE].

    ADS  Article  Google Scholar 

  34. Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics, JHEP 01 (2021) 173 [arXiv:2009.14368] [INSPIRE].

    Article  Google Scholar 

  35. Y. Hidaka, M. Nitta, and R. Yokokura, Higher-form symmetries and 3-group in axion electrodynamics, Phys. Lett. B 808 (2020) 135672.

    MathSciNet  Article  Google Scholar 

  36. E. Witten, Dyons of charge e θ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

    ADS  Article  Google Scholar 

  37. E. Corrigan, D. I. Olive, D. B. Fairlie and J. Nuyts, Magnetic monopoles in SU(3) gauge theories, Nucl. Phys. B 106 (1976) 475 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls, and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

    ADS  Article  Google Scholar 

  39. Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. M. M. Anber and E. Poppitz, On the baryon-color-flavor (BCF) anomaly in vector-like theories, JHEP 11 (2019) 063 [arXiv:1909.09027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. M. Dierigl and A. Pritzel, Topological model for domain walls in (super-)Yang-Mills theories, Phys. Rev. D 90 (2014) 105008 [arXiv:1405.4291] [INSPIRE].

    ADS  Article  Google Scholar 

  42. G. W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. S. Elitzur, G. W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. S.-y. Furui, R. Kobayashi and K. Ujiie, A comment on the Kl4 decay in the gauged nonlinear sigma model with the Wess-Zumino condition, Prog. Theor. Phys. 76 (1986) 963 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryutaro Matsudo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.14637

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kitano, R., Matsudo, R. Vector mesons on the wall. J. High Energ. Phys. 2021, 23 (2021). https://doi.org/10.1007/JHEP03(2021)023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2021)023

Keywords

  • 1/N Expansion
  • Anomalies in Field and String Theories
  • Chiral Lagrangians
  • Duality in Gauge Field Theories