Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Modeling of GERDA Phase II data

  • Regular Article - Experimental Physics
  • Open Access
  • Published: 24 March 2020
  • volume 2020, Article number: 139 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Modeling of GERDA Phase II data
Download PDF
  • The GERDA collaboration,
  • M. Agostini16,
  • A. M. Bakalyarov14,
  • M. Balata1,
  • I. Barabanov12,
  • L. Baudis20,
  • C. Bauer8,
  • E. Bellotti9,10,
  • S. Belogurov13,12,21,
  • A. Bettini17,18,
  • L. Bezrukov12,
  • D. Borowicz6,
  • E. Bossio16,
  • V. Bothe8,
  • V. Brudanin6,
  • R. Brugnera17,18,
  • A. Caldwell15,
  • C. Cattadori10,
  • A. Chernogorov13,14,
  • T. Comellato16,
  • V. D’Andrea2,
  • E. V. Demidova13,
  • N. Di Marco1,
  • A. Domula5,
  • E. Doroshkevich12,
  • V. Egorov6,
  • F. Fischer15,
  • M. Fomina6,
  • A. Gangapshev12,8,
  • A. Garfagnini17,18,
  • C. Gooch15,
  • P. Grabmayr  ORCID: orcid.org/0000-0002-3384-973519,
  • V. Gurentsov12,
  • K. Gusev6,14,16,
  • J. Hakenmüller8,
  • S. Hemmer18,
  • R. Hiller20,
  • W. Hofmann8,
  • M. Hult7,
  • L. V. Inzhechik12,22,
  • J. Janicskó Csáthy16 nAff23,
  • J. Jochum19,
  • M. Junker1,
  • V. Kazalov12,
  • Y. Kermaïdic8,
  • T. Kihm8,
  • I. V. Kirpichnikov13,
  • A. Klimenko8,6,24,
  • R. Kneißl15,
  • K. T. Knöpfle8,
  • O. Kochetov6,
  • V. N. Kornoukhov13,12,
  • P. Krause16,
  • V. V. Kuzminov12,
  • M. Laubenstein1,
  • A. Lazzaro16,
  • M. Lindner8,
  • I. Lippi18,
  • A. Lubashevskiy6,
  • B. Lubsandorzhiev12,
  • G. Lutter7,
  • C. Macolino1 nAff25,
  • B. Majorovits15,
  • W. Maneschg8,
  • M. Miloradovic20,
  • R. Mingazheva20,
  • M. Misiaszek4,
  • P. Moseev12,
  • I. Nemchenok6,24,
  • K. Panas4,
  • L. Pandola3,
  • K. Pelczar1,
  • L. Pertoldi17,18,
  • P. Piseri11,
  • A. Pullia11,
  • C. Ransom20,
  • S. Riboldi11,
  • N. Rumyantseva14,6,
  • C. Sada17,18,
  • F. Salamida2,
  • S. Schönert16,
  • J. Schreiner8,
  • M. Schütt8,
  • A-K. Schütz19,
  • O. Schulz15,
  • M. Schwarz16,
  • B. Schwingenheuer8,
  • O. Selivanenko12,
  • E. Shevchik6,
  • M. Shirchenko6,
  • H. Simgen8,
  • A. Smolnikov8,6,
  • D. Stukov14,
  • L. Vanhoefer15,
  • A. A. Vasenko13,
  • A. Veresnikova12,
  • C. Vignoli1,
  • K. von Sturm17,18,
  • T. Wester5,
  • C. Wiesinger16,
  • M. Wojcik4,
  • E. Yanovich12,
  • B. Zatschler5,
  • I. Zhitnikov6,
  • S. V. Zhukov14,
  • D. Zinatulina6,
  • A. Zschocke19,
  • A. J. Zsigmond15,
  • K. Zuber5 &
  • …
  • G. Zuzel4 
  • 881 Accesses

  • 20 Citations

  • 3 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of \( {16.04}_{-0.85}^{+0.78}\cdotp {10}^{-3} \) cts/(keV·kg·yr) for the enriched BEGe data set and \( {14.68}_{-0.52}^{+0.47}\cdotp {10}^{-3} \) cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

  2. R.N. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].

  3. H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys. 17 (2015) 115010.

  4. Gerda collaboration, The Gerda experiment for the search of 0νββ decay in 76 Ge, Eur. Phys. J. C 73 (2013) 2330 [arXiv:1212.4067] [INSPIRE].

  5. Gerda collaboration, Upgrade for Phase II of the Gerda experiment, Eur. Phys. J. C 78 (2018) 388 [arXiv:1711.01452] [INSPIRE].

  6. B.J. Mount, M. Redshaw and E.G. Myers, Double-β-decay Q values of 74Se and 76Ge, Phys. Rev. C 81 (2010) 032501 [INSPIRE].

  7. Gerda collaboration, Background-free search for neutrinoless double-β decay of 76Ge with Gerda, Nature 544 (2017) 47 [arXiv:1703.00570] [INSPIRE].

  8. Gerda collaboration, Improved Limit on Neutrinoless Double-β Decay of 76Ge from Gerda Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].

  9. Gerda collaboration, Probing Majorana neutrinos with double-β decay, Science 365 (2019) 1445 [arXiv:1909.02726] [INSPIRE].

  10. Gerda collaboration, Pulse shape discrimination for Gerda Phase I data, Eur. Phys. J. C 73 (2013) 2583 [arXiv:1307.2610] [INSPIRE].

  11. A. Lubashevskiy et al., Mitigation of 42Ar/42K background for the Gerda Phase II experiment, Eur. Phys. J. C 78 (2018) 15 [arXiv:1708.00226] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Gerda collaboration, Production, characterization and operation of 76Ge enriched BEGe detectors in Gerda, Eur. Phys. J. C 75 (2015) 39 [arXiv:1410.0853] [INSPIRE].

  13. Gerda collaboration, Characterization of 30 76Ge enriched Broad Energy Ge detectors for Gerda Phase II, Eur. Phys. J. C 79 (2019) 978 [arXiv:1901.06590] [INSPIRE].

  14. Gerda collaboration, The background in the 0νββ experiment Gerda, Eur. Phys. J. C 74 (2014) 2764 [arXiv:1306.5084] [INSPIRE].

  15. L. Vanhoefer, Limitations of Rare Event HPGe Experiments due to Muon-Induced Neutron Background, Ph.D. Thesis, Technische Universität München (2018).

  16. Gerda collaboration, Improvement of the energy resolution via an optimized digital signal processing in Gerda Phase I, Eur. Phys. J. C 75 (2015) 255 [arXiv:1502.04392] [INSPIRE].

  17. T. Wester, Characterization of coincidence data of the Gerda experiment to search for double beta decays to excited states, Ph.D. Thesis, Technische Universität Dresden (2019).

  18. M. Boswell et al., MaGe — a Geant4-Based Monte Carlo Application Framework for Low-Background Germanium Experiments, IEEE Trans. Nucl. Sci. 58 (2011) 1212.

    Article  ADS  Google Scholar 

  19. Geant4 collaboration, Geant4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  20. J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

    Article  ADS  Google Scholar 

  21. J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. A 835 (2016) 186 [INSPIRE].

    Article  ADS  Google Scholar 

  22. V. Tretyak and Y. Zdesenko, Tables of double beta decay data, Atom. Data Nucl. Data Tabl. 61 (1995) 43.

    Article  ADS  Google Scholar 

  23. O.A. Ponkratenko, V.I. Tretyak and Y.G. Zdesenko, The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei, Phys. Atom. Nucl. 63 (2000) 1282 [nucl-ex/0104018] [INSPIRE].

  24. M.L. di Vacri et al., ICP MS selection of radiopure materials for the Gerda experiment, AIP Conf. Proc. 1672 (2015) 150001 [INSPIRE].

    Article  Google Scholar 

  25. G. Meierhofer, P. Kudejova, L. Canella, P. Grabmayr, J. Jochum and J. Jolie, Thermal neutron capture cross-section of 76Ge, Eur. Phys. J. A 40 (2009) 61.

    Article  ADS  Google Scholar 

  26. G. Meierhofer, P. Grabmayr, J. Jochum, P. Kudejova, L. Canella and J. Jolie, Thermal neutron capture cross section of 74Ge, Phys. Rev. C 81 (2010) 027603 [INSPIRE].

  27. G. Meierhofer, P. Grabmayr, L. Canella, P. Kudejova, J. Jolie and N. Warr, Prompt γ rays in 77Ge and 75Ge after thermal neutron capture, Eur. Phys. J. A 48 (2012) 20 [INSPIRE].

    Article  ADS  Google Scholar 

  28. H.V. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [INSPIRE].

  29. IGEX collaboration, The IGEX 76Ge neutrinoless double beta decay experiment: Prospects for next generation experiments, Phys. Rev. D 65 (2002) 092007 [hep-ex/0202026] [INSPIRE].

  30. Gerda collaboration, Limits on uranium and thorium bulk content in Gerda Phase I detectors, Astropart. Phys. 91 (2017) 15 [arXiv:1611.06884] [INSPIRE].

  31. K. Freund, Muonic Background in the Gerda 0νββ Experiment, Ph.D. Thesis, Eberhard Karls Universität Tübingen (2014).

  32. C. Wiesinger, L. Pandola and S. Schönert, Virtual depth by active background suppression: Revisiting the cosmic muon induced background of Gerda Phase II, Eur. Phys. J. C 78 (2018) 597 [arXiv:1802.05040] [INSPIRE].

  33. I. Barabanov et al., Shielding of the Gerda experiment against external gamma background, Nucl. Instrum. Meth. A 606 (2009) 790 [INSPIRE].

    Article  ADS  Google Scholar 

  34. D.M. Mei, S.R. Elliott, A. Hime, V. Gehman and K. Kazkaz, Neutron inelastic scattering processes as a background for double-beta decay experiments, Phys. Rev. C 77 (2008) 054614 [arXiv:0704.0306] [INSPIRE].

  35. K. Winger, J. Feichter, M. Kalinowski, H. Sartorius and C. Schlosser, A new compilation of the atmospheric 85Krypton inventories from 1945 to 2000 and its evaluation in a global transport model, J. Environ. Radioactiv. 80 (2005) 183.

    Article  Google Scholar 

  36. A. Caldwell, D. Kollár and K. Kröninger, BAT: The Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].

  37. F. Beaujean, A. Caldwell, D. Greenwald, K. Kröninger and O. Schulz, BAT release, version 1.0.0, https://doi.org/10.5281/zenodo.1322675 (2018).

  38. F. Beaujean, A. Caldwell, D. Kollár and K. Kröninger, p-values for model evaluation, Phys. Rev. D 83 (2011) 012004 [arXiv:1011.1674].

  39. B. Lehnert, Search for 2νββ Excited State Transitions and HPGe Characterization for Surface Events in Gerda Phase II, Ph.D. Thesis, Technische Universität Dresden (2016).

  40. R. Aggarwal and A. Caldwell, Error bars for distributions of numbers of events, Eur. Phys. J. Plus. 127 (2012) 24.

    Article  Google Scholar 

  41. Gerda collaboration, Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the Gerda Experiment, Phys. Rev. Lett. 111 (2013) 122503 [arXiv:1307.4720] [INSPIRE].

  42. Gerda collaboration, Measurement of the half-life of the two-neutrino double beta decay of 76Ge with the Gerda experiment, J. Phys. G 40 (2013) 035110 [arXiv:1212.3210] [INSPIRE].

  43. Gerda collaboration, Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from Gerda Phase I, Eur. Phys. J. C 75 (2015) 416 [arXiv:1501.02345] [INSPIRE].

  44. J.S. Díaz, Limits on Lorentz and CPT violation from double beta decay, Phys. Rev. D 89 (2014) 036002 [arXiv:1311.0930] [INSPIRE].

  45. LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), AIP Conf. Proc. 1894 (2017) 020027 [arXiv:1709.01980] [INSPIRE].

  46. V. D’Andrea, Improvement of Performance and Background Studies in Gerda Phase II, Ph.D. Thesis, Gran Sasso Science Institute (GSSI) (2017).

  47. M.Z.M.J. Berger, J.S. Coursey and J. Chang, Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions, NIST Standard Reference Database 124 (2017) .

  48. M.-M. Bé et al., Table of Radionuclides, vol. 4 of Monographie BIPM-5, Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92310 Sèvres, France (2008).

  49. M. Agostini, Signal and background studies for the search of neutrinoless double beta decay in Gerda, Ph.D. Thesis, TechnischeV Universität München (2013).

  50. B.T. Cleveland, The analysis of radioactive decay with a small number of counts by the method of maximum likelihood, Nucl. Instrum. Meth. 214 (1983) 451 [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Author notes
  1. J. Janicskó Csáthy

    Present address: Leibniz-Institut für Kristallzüchtung, Berlin, Germany

  2. C. Macolino

    Present address: LAL, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Authors and Affiliations

  1. INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy

    M. Balata, N. Di Marco, M. Junker, M. Laubenstein, C. Macolino, K. Pelczar & C. Vignoli

  2. INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila, L’Aquila, Italy

    V. D’Andrea & F. Salamida

  3. INFN Laboratori Nazionali del Sud, Catania, Italy

    L. Pandola

  4. Institute of Physics, Jagiellonian University, Cracow, Poland

    M. Misiaszek, K. Panas, M. Wojcik & G. Zuzel

  5. Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

    A. Domula, T. Wester, B. Zatschler & K. Zuber

  6. Joint Institute for Nuclear Research, Dubna, Russia

    D. Borowicz, V. Brudanin, V. Egorov, M. Fomina, K. Gusev, A. Klimenko, O. Kochetov, A. Lubashevskiy, I. Nemchenok, N. Rumyantseva, E. Shevchik, M. Shirchenko, A. Smolnikov, I. Zhitnikov & D. Zinatulina

  7. European Commission, JRC-Geel, Geel, Belgium

    M. Hult & G. Lutter

  8. Max-Planck-Institut für Kernphysik, Heidelberg, Germany

    C. Bauer, V. Bothe, A. Gangapshev, J. Hakenmüller, W. Hofmann, Y. Kermaïdic, T. Kihm, A. Klimenko, K. T. Knöpfle, M. Lindner, W. Maneschg, J. Schreiner, M. Schütt, B. Schwingenheuer, H. Simgen & A. Smolnikov

  9. Dipartimento di Fisica, Università Milano Bicocca, Milan, Italy

    E. Bellotti

  10. INFN Milano Bicocca, Milan, Italy

    E. Bellotti & C. Cattadori

  11. Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, Milan, Italy

    P. Piseri, A. Pullia & S. Riboldi

  12. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

    I. Barabanov, S. Belogurov, L. Bezrukov, E. Doroshkevich, A. Gangapshev, V. Gurentsov, L. V. Inzhechik, V. Kazalov, V. N. Kornoukhov, V. V. Kuzminov, B. Lubsandorzhiev, P. Moseev, O. Selivanenko, A. Veresnikova & E. Yanovich

  13. Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia

    S. Belogurov, A. Chernogorov, E. V. Demidova, I. V. Kirpichnikov, V. N. Kornoukhov & A. A. Vasenko

  14. National Research Centre “Kurchatov Institute”, Moscow, Russia

    A. M. Bakalyarov, A. Chernogorov, K. Gusev, N. Rumyantseva, D. Stukov & S. V. Zhukov

  15. Max-Planck-Institut für Physik, Munich, Germany

    A. Caldwell, F. Fischer, C. Gooch, R. Kneißl, B. Majorovits, O. Schulz, L. Vanhoefer & A. J. Zsigmond

  16. Physik Department, Technische Universität München, Munich, Germany

    M. Agostini, E. Bossio, T. Comellato, K. Gusev, J. Janicskó Csáthy, P. Krause, A. Lazzaro, S. Schönert, M. Schwarz & C. Wiesinger

  17. Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy

    A. Bettini, R. Brugnera, A. Garfagnini, L. Pertoldi, C. Sada & K. von Sturm

  18. INFN Padova, Padua, Italy

    A. Bettini, R. Brugnera, A. Garfagnini, S. Hemmer, I. Lippi, L. Pertoldi, C. Sada & K. von Sturm

  19. Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany

    P. Grabmayr, J. Jochum, A-K. Schütz & A. Zschocke

  20. Physik-Institut, Universität Zürich, Zurich, Switzerland

    L. Baudis, R. Hiller, M. Miloradovic, R. Mingazheva & C. Ransom

  21. NRNU MEPhI, Moscow, Russia

    S. Belogurov

  22. Moscow Inst. of Physics and Technology, Moscow, Russia

    L. V. Inzhechik

  23. Dubna State University, Dubna, Russia

    A. Klimenko & I. Nemchenok

Authors
  1. M. Agostini
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. M. Bakalyarov
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. Balata
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. I. Barabanov
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. L. Baudis
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. C. Bauer
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. E. Bellotti
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. S. Belogurov
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. A. Bettini
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. L. Bezrukov
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. D. Borowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. E. Bossio
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. V. Bothe
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. V. Brudanin
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. R. Brugnera
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. A. Caldwell
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. C. Cattadori
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. A. Chernogorov
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. T. Comellato
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. V. D’Andrea
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. E. V. Demidova
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. N. Di Marco
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. A. Domula
    View author publications

    You can also search for this author in PubMed Google Scholar

  24. E. Doroshkevich
    View author publications

    You can also search for this author in PubMed Google Scholar

  25. V. Egorov
    View author publications

    You can also search for this author in PubMed Google Scholar

  26. F. Fischer
    View author publications

    You can also search for this author in PubMed Google Scholar

  27. M. Fomina
    View author publications

    You can also search for this author in PubMed Google Scholar

  28. A. Gangapshev
    View author publications

    You can also search for this author in PubMed Google Scholar

  29. A. Garfagnini
    View author publications

    You can also search for this author in PubMed Google Scholar

  30. C. Gooch
    View author publications

    You can also search for this author in PubMed Google Scholar

  31. P. Grabmayr
    View author publications

    You can also search for this author in PubMed Google Scholar

  32. V. Gurentsov
    View author publications

    You can also search for this author in PubMed Google Scholar

  33. K. Gusev
    View author publications

    You can also search for this author in PubMed Google Scholar

  34. J. Hakenmüller
    View author publications

    You can also search for this author in PubMed Google Scholar

  35. S. Hemmer
    View author publications

    You can also search for this author in PubMed Google Scholar

  36. R. Hiller
    View author publications

    You can also search for this author in PubMed Google Scholar

  37. W. Hofmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  38. M. Hult
    View author publications

    You can also search for this author in PubMed Google Scholar

  39. L. V. Inzhechik
    View author publications

    You can also search for this author in PubMed Google Scholar

  40. J. Janicskó Csáthy
    View author publications

    You can also search for this author in PubMed Google Scholar

  41. J. Jochum
    View author publications

    You can also search for this author in PubMed Google Scholar

  42. M. Junker
    View author publications

    You can also search for this author in PubMed Google Scholar

  43. V. Kazalov
    View author publications

    You can also search for this author in PubMed Google Scholar

  44. Y. Kermaïdic
    View author publications

    You can also search for this author in PubMed Google Scholar

  45. T. Kihm
    View author publications

    You can also search for this author in PubMed Google Scholar

  46. I. V. Kirpichnikov
    View author publications

    You can also search for this author in PubMed Google Scholar

  47. A. Klimenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  48. R. Kneißl
    View author publications

    You can also search for this author in PubMed Google Scholar

  49. K. T. Knöpfle
    View author publications

    You can also search for this author in PubMed Google Scholar

  50. O. Kochetov
    View author publications

    You can also search for this author in PubMed Google Scholar

  51. V. N. Kornoukhov
    View author publications

    You can also search for this author in PubMed Google Scholar

  52. P. Krause
    View author publications

    You can also search for this author in PubMed Google Scholar

  53. V. V. Kuzminov
    View author publications

    You can also search for this author in PubMed Google Scholar

  54. M. Laubenstein
    View author publications

    You can also search for this author in PubMed Google Scholar

  55. A. Lazzaro
    View author publications

    You can also search for this author in PubMed Google Scholar

  56. M. Lindner
    View author publications

    You can also search for this author in PubMed Google Scholar

  57. I. Lippi
    View author publications

    You can also search for this author in PubMed Google Scholar

  58. A. Lubashevskiy
    View author publications

    You can also search for this author in PubMed Google Scholar

  59. B. Lubsandorzhiev
    View author publications

    You can also search for this author in PubMed Google Scholar

  60. G. Lutter
    View author publications

    You can also search for this author in PubMed Google Scholar

  61. C. Macolino
    View author publications

    You can also search for this author in PubMed Google Scholar

  62. B. Majorovits
    View author publications

    You can also search for this author in PubMed Google Scholar

  63. W. Maneschg
    View author publications

    You can also search for this author in PubMed Google Scholar

  64. M. Miloradovic
    View author publications

    You can also search for this author in PubMed Google Scholar

  65. R. Mingazheva
    View author publications

    You can also search for this author in PubMed Google Scholar

  66. M. Misiaszek
    View author publications

    You can also search for this author in PubMed Google Scholar

  67. P. Moseev
    View author publications

    You can also search for this author in PubMed Google Scholar

  68. I. Nemchenok
    View author publications

    You can also search for this author in PubMed Google Scholar

  69. K. Panas
    View author publications

    You can also search for this author in PubMed Google Scholar

  70. L. Pandola
    View author publications

    You can also search for this author in PubMed Google Scholar

  71. K. Pelczar
    View author publications

    You can also search for this author in PubMed Google Scholar

  72. L. Pertoldi
    View author publications

    You can also search for this author in PubMed Google Scholar

  73. P. Piseri
    View author publications

    You can also search for this author in PubMed Google Scholar

  74. A. Pullia
    View author publications

    You can also search for this author in PubMed Google Scholar

  75. C. Ransom
    View author publications

    You can also search for this author in PubMed Google Scholar

  76. S. Riboldi
    View author publications

    You can also search for this author in PubMed Google Scholar

  77. N. Rumyantseva
    View author publications

    You can also search for this author in PubMed Google Scholar

  78. C. Sada
    View author publications

    You can also search for this author in PubMed Google Scholar

  79. F. Salamida
    View author publications

    You can also search for this author in PubMed Google Scholar

  80. S. Schönert
    View author publications

    You can also search for this author in PubMed Google Scholar

  81. J. Schreiner
    View author publications

    You can also search for this author in PubMed Google Scholar

  82. M. Schütt
    View author publications

    You can also search for this author in PubMed Google Scholar

  83. A-K. Schütz
    View author publications

    You can also search for this author in PubMed Google Scholar

  84. O. Schulz
    View author publications

    You can also search for this author in PubMed Google Scholar

  85. M. Schwarz
    View author publications

    You can also search for this author in PubMed Google Scholar

  86. B. Schwingenheuer
    View author publications

    You can also search for this author in PubMed Google Scholar

  87. O. Selivanenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  88. E. Shevchik
    View author publications

    You can also search for this author in PubMed Google Scholar

  89. M. Shirchenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  90. H. Simgen
    View author publications

    You can also search for this author in PubMed Google Scholar

  91. A. Smolnikov
    View author publications

    You can also search for this author in PubMed Google Scholar

  92. D. Stukov
    View author publications

    You can also search for this author in PubMed Google Scholar

  93. L. Vanhoefer
    View author publications

    You can also search for this author in PubMed Google Scholar

  94. A. A. Vasenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  95. A. Veresnikova
    View author publications

    You can also search for this author in PubMed Google Scholar

  96. C. Vignoli
    View author publications

    You can also search for this author in PubMed Google Scholar

  97. K. von Sturm
    View author publications

    You can also search for this author in PubMed Google Scholar

  98. T. Wester
    View author publications

    You can also search for this author in PubMed Google Scholar

  99. C. Wiesinger
    View author publications

    You can also search for this author in PubMed Google Scholar

  100. M. Wojcik
    View author publications

    You can also search for this author in PubMed Google Scholar

  101. E. Yanovich
    View author publications

    You can also search for this author in PubMed Google Scholar

  102. B. Zatschler
    View author publications

    You can also search for this author in PubMed Google Scholar

  103. I. Zhitnikov
    View author publications

    You can also search for this author in PubMed Google Scholar

  104. S. V. Zhukov
    View author publications

    You can also search for this author in PubMed Google Scholar

  105. D. Zinatulina
    View author publications

    You can also search for this author in PubMed Google Scholar

  106. A. Zschocke
    View author publications

    You can also search for this author in PubMed Google Scholar

  107. A. J. Zsigmond
    View author publications

    You can also search for this author in PubMed Google Scholar

  108. K. Zuber
    View author publications

    You can also search for this author in PubMed Google Scholar

  109. G. Zuzel
    View author publications

    You can also search for this author in PubMed Google Scholar

Consortia

The GERDA collaboration

Corresponding author

Correspondence to P. Grabmayr.

Additional information

ArXiv ePrint: 1909.02522

Deceased (V. Egorov)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The GERDA collaboration., Agostini, M., Bakalyarov, A.M. et al. Modeling of GERDA Phase II data. J. High Energ. Phys. 2020, 139 (2020). https://doi.org/10.1007/JHEP03(2020)139

Download citation

  • Received: 17 October 2019

  • Revised: 29 January 2020

  • Accepted: 01 March 2020

  • Published: 24 March 2020

  • DOI: https://doi.org/10.1007/JHEP03(2020)139

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dark Matter and Double Beta Decay (experiments)

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature