Abstract
We found, through analytical and numerical methods, new towers of infinite number of asymptotically conserved charges for deformations of the Korteweg-de Vries equation (KdV). It is shown analytically that the standard KdV also exhibits some towers of infinite number of anomalous charges, and that their relevant anomalies vanish for N −soliton solution. Some deformations of the KdV model are performed through the Riccati-type pseudo-potential approach, and infinite number of exact non-local conservation laws is provided using a linear formulation of the deformed model. In order to check the degrees of modifications of the charges around the soliton interaction regions, we compute numerically some representative anomalies, associated to the lowest order quasi-conservation laws, depending on the deformation parameters {ϵ1, ϵ2}, which include the standard KdV (ϵ1 = ϵ2 = 0), the regularized long-wave (RLW) (ϵ1 = 1, ϵ2 = 0), the modified regularized long-wave (mRLW) (ϵ1 = ϵ2 = 1) and the KdV-RLW (KdV-BBM) type (ϵ2 = 0, ≠ = {0, 1}) equations, respectively. Our numerical simulations show the elastic scattering of two and three solitons for a wide range of values of the set {ϵ1, ϵ2}, for a variety of amplitudes and relative velocities. The KdV-type equations are quite ubiquitous in several areas of non-linear science, and they find relevant applications in the study of General Relativity on AdS3, Bose-Einstein condensates, superconductivity and soliton gas and turbulence in fluid dynamics.
Article PDF
References
L.A. Ferreira and W.J. Zakrzewski, The concept of quasi-integrability: a concrete example, JHEP 05 (2011) 130 [arXiv:1011.2176] [INSPIRE].
W. Yao and J. Jing, Holographic entanglement entropy in insulator/superconductor transition with Born-Infeld electrodynamics, JHEP 05 (2014) 058 [arXiv:1401.6505] [INSPIRE].
L.A. Ferreira and W.J. Zakrzewski, Breather-like structures in modified sine-Gordon models, Nonlinearity 29 (2016) 1622 [arXiv:1404.5812] [INSPIRE].
J. Hietarinta, Hirota’s bilinear method and partial integrability, in Partially Integrable Equations in Physics, R. Conte and N. Boccara eds., NATO ASI Series, volume 310, Springer, Dordrecht The Netherlands (1990).
Y.T. Kivshar and B.A. Malomed, Dynamics of Solitons in Nearly Integrable Systems, Rev. Mod. Phys. 61 (1989) 763 [Addendum ibid. 63 (1991) 211] [INSPIRE].
A. Arnaudon, On a Lagrangian reduction and a deformation of completely integrable systems, J. Nonlinear Sci. 26 (2016) 1133.
L.A. Ferreira, G. Luchini and W.J. Zakrzewski, The concept of quasi-integrability for modified non-linear Schr¨odinger models, JHEP 09 (2012) 103 [arXiv:1206.5808] [INSPIRE].
V.H. Aurichio and L.A. Ferreira, Quasi-Integrable Deformations of the Bullough-Dodd model, JHEP 03 (2015) 152 [arXiv:1501.01821] [INSPIRE].
L.A. Ferreira, P. Klimas and W.J. Zakrzewski, Quasi-integrable deformations of the SU(3) Affine Toda Theory, JHEP 05 (2016) 065 [arXiv:1602.02003] [INSPIRE].
F. ter Braak, L.A. Ferreira and W.J. Zakrzewski, Quasi-integrability of deformations of the KdV equation, Nucl. Phys. B 939 (2019) 49 [arXiv:1710.00918] [INSPIRE].
K. Abhinav and P. Guha, Quasi-Integrability in Supersymmetric sine-Gordon Models, Europhys. Lett. 116 (2016) 10004 [arXiv:1607.07222] [INSPIRE].
H. Blas, H.F. Callisaya and J.P.R. Campos, Riccati-type pseudo-potentials, conservation laws and solitons of deformed sine-Gordon models, Nucl. Phys. B 950 (2020) 114852 [arXiv:1801.00866] [INSPIRE].
H. Blas and M. Zambrano, Quasi-integrability in the modified defocusing non-linear Schrödinger model and dark solitons, JHEP 03 (2016) 005 [arXiv:1511.04748] [INSPIRE].
H. Blas and M. Zambrano, Modified non-linear Schr¨odinger models, infinite tower of conserved charges and dark solitons, J. Phys. Conf. Ser. 1143 (2018) 012004 [INSPIRE].
H. Blas, A.C.R. do Bonfim and A.M. Vilela, Quasi-integrable non-linear Schr¨odinger models, infinite towers of exactly conserved charges and bright solitons, JHEP 05 (2017) 106 [arXiv:1610.07503] [INSPIRE].
H. Blas and H.F. Callisaya, Quasi-integrability in deformed sine-Gordon models and infinite towers of conserved charges, Commun. Nonlinear Sci. Numer. Simul. 55 (2018) 105 [arXiv:1605.08957] [INSPIRE].
D.J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: from theory to experiments, J. Phys. A 3 (2010) 213001 [arXiv:1004.4071].
A. Gurevich and V.M. Vinokur, Interband Phase Modes and Nonequilibrium Soliton Structures in Two-Gap Superconductors, Phys. Rev. Lett. 90 (2003) 047004.
Y. Tanaka, Soliton in Two-Band Superconductor, Phys. Rev. Lett. 88 (2002) 017002.
E. Ojeda and A. Pérez, Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies, JHEP 08 (2019) 079 [arXiv:1906.11226] [INSPIRE].
E.N. Pelinovsky, E.G. Shurgalina, A.V. Sergeeva, T.G. Talipova, G.A. El and R.H.J. Grimshaw, Two-soliton interaction as an elementary act of soliton turbulence in integrable systems, Phys. Lett. 377 (2013) 272.
E.N. Pelinovsky and E.G. Shurgalina, Two-Soliton Interaction Within the Framework of the Modified Korteweg-de Vries Equation, Radiophys. Quantum Electron. 57 (2015) 737.
I. Redor, E. Barthelemy, H. Michallet, M. Onorato and N. Mordant, Experimental Evidence of a Hydrodynamic Soliton Gas, Phys. Rev. Lett. 122 (2019) 214502.
S.Y. Lou and F. Huang, Alice-Bob Physics: Coherent Solutions of Nonlocal KdV Systems, Sci. Rep. 7 (2017) 869.
M. Jia and S.Y. Lou, Exact 𝒫s 𝒯d invariant and 𝒫s 𝒯d symmetric breaking solutions, symmetry reductions and B¨acklund transformations for an AB–KdV system, Phys. Lett. 382 (2018) 1157.
A. Das, Integrable Models, World Scientific (1989).
L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer, Berlin Germany (2007).
O. Babelon and D. Bernard, The sine-Gordon solitons as a N body problem, Phys. Lett. B 317 (1993) 363 [hep-th/9309154] [INSPIRE].
O. Babelon, D. Bernard and F.A. Smirnov, Quantization of solitons and the restricted sine-Gordon model, Commun. Math. Phys. 182 (1996) 319 [hep-th/9603010] [INSPIRE].
G. Staffilani, KdV and almost conservation laws, in Harmonic analysis at Mount Holyoke, proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Harmonic Analysis, South Hadley, MA, U.S.A., 25 June–5 July 2001, Contemporary Mathematics, volume 320, American Mathematical Society, Providence U.S.A. (2003) [math.AP/0204014].
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋, J. Am. Math. Soc. 16 (2003) 705.
J.C. Eilbeck and G.R. McGuire, Numerical study of the regularized long-wave equation I: Numerical methods, J. Comput. Phys. 19 (1975) 43.
J.C. Eilbeck and G.R. Mcguire, Numerical study of the regularized long wave equation II: Interaction of solitary waves, J. Comput. Phys. 23 (1977) 63 [INSPIRE].
S. Israwi and H. Kalisch, Approximate conservation laws in the KdV equation, Phys. Lett. 383 (2019) 854.
E.G. Didenkulova (Shurgalina), Numerical modeling of soliton turbulence within the focusing Gardner equation: Rogue wave emergence, Physica D 399 (2019) 35.
D. Dutykh and E.N. Pelinovsky, Numerical simulation of a solitonic gas in KdV and KdV–BBM equations, Phys. Lett. 378 (2014) 3102.
Z. Chai, N. He, Z. Guo and B. Shi, Lattice Boltzmann model for high-order nonlinear partial differential equations, Phys. Rev. E 97 (2018) 013304.
W. Hereman and U. Koktas, Integrability Tests for Nonlinear Evolution Equations, in Computer Algebra Systems: A Practical Guide, M. Wester ed., Wiley and Sons, New York U.S.A. (1999).
D. Dutykh, T. Katsaounis and D. Mitsotakis, Finite volume methods for unidirectional dispersive wave models, Int. J. Numer. Methods Fluids 71 (2013) 717.
T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. Lond. A 272 (1972) 47.
V.A.S. Junior, Lie point symmetries and conservation laws for a class of BBM–KdV systems, Commun. Nonlinear Sci. Numer. Simul. 69 (2019) 73.
R. Hirota, Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons, Phys. Rev. Lett. 27 (1971) 1192 [INSPIRE].
J.D. Gibbon, J.C. Eilbeck and R.K. Dodd, A Modified Regularized Long Wave Equation with an Exact Two Soliton Solution, J. Phys. A 9 (1976) L127 [INSPIRE].
P.J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc. 85 (1979) 143.
E. Brézin, C. Itzykson, J. Zinn-Justin and J.B. Zuber, Remarks About the Existence of Nonlocal Charges in Two-Dimensional Models, Phys. Lett. B 82 (1979) 442 [INSPIRE].
N.J. MacKay, Introduction to Yangian symmetry in integrable field theory, Int. J. Mod. Phys. A 20 (2005) 7189 [hep-th/0409183] [INSPIRE].
E. Abdalla, M.C.B. Abadalla and K. Rothe, Non-perturbative methods in two-dimensional quantum field theory, second edition, World Scientific, Singapore (2001).
M. Lüscher, Quantum Nonlocal Charges and Absence of Particle Production in the Two-Dimensional Nonlinear σ-model, Nucl. Phys. B 135 (1978) 1 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 2001.02471
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Blas, H., Ochoa, R. & Suarez, D. Quasi-integrable KdV models, towers of infinite number of anomalous charges and soliton collisions. J. High Energ. Phys. 2020, 136 (2020). https://doi.org/10.1007/JHEP03(2020)136
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2020)136