Abstract
We determine the strong coupling αs(mZ ) from dimensionless ratios of roots of moments of the charm- and bottom-quark vector and charm pseudo-scalar correlators, dubbed \( {R}_q^{X,n}\equiv \left({M}_q^{X,n}\right)\frac{1}{n}/{\left({M}_q^{X,n+1}\right)}^{\frac{1}{n+1}}, \) with X = V, P , as well as from the 0-th moment of the charm pseudo-scalar correlator, \( {M}_c^{P,0}. \) In the quantities we use, the mass dependence is very weak, entering only logarithmically, starting at 𝒪\( \left({\alpha}_s^2\right). \) We carefully study all sources of uncertainties, paying special attention to truncation errors, and making sure that order-by-order convergence is maintained by our choice of renormalization scale variation. In the computation of the experimental uncertainty for the moment ratios, the correlations among individual moments are properly taken into account. Additionally, in the perturbative contributions to experimental vector-current moments, αs(mZ) is kept as a free parameter such that our extraction of the strong coupling is unbiased and based only on experimental data. The most precise extraction of αs from vector correlators comes from the ratio of the charm-quark moments \( {R}_c^{V,2} \) and reads αs(mZ) = 0.1168±0.0019, as we have recently discussed in a companion letter. From bottom moments, using the ratio \( {R}_c^{V,2} \), we find αs (mZ) = 0.1186±0.0048. Our results from the lattice pseudo-scalar charm correlator agree with the central values of previous determinations, but have larger uncertainties due to our more conservative study of the perturbative error. Averaging the results obtained from various lattice inputs for the n = 0 moment we find αs(mZ) = 0.1177±0.0020. Combining experimental and lattice information on charm correlators into a single fit we obtain αs(mZ) = 0.1170±0.0014, which is the main result of this article.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Pich, J. Rojo, R. Sommer and A. Vairo, Determining the strong coupling: status and challenges, PoS(Confinement2018)035 [arXiv:1811.11801] [INSPIRE].
G.P. Salam, The strong coupling: a theoretical perspective, in From my vast repertoire. . . : guido Altarelli’s legacy, A. Levy et al. eds., World Scientific, Singapore (2019), arXiv:1712.05165 [INSPIRE].
B. Dehnadi, A.H. Hoang, V. Mateu and S.M. Zebarjad, Charm mass determination from QCD charmonium sum rules at order \( {\alpha}_s^3, \) , JHEP 09 (2013) 103 [arXiv:1102.2264] [INSPIRE].
G. Corcella and A.H. Hoang, Uncertainties in the MS-bar bottom quark mass from relativistic sum rules, Phys. Lett. B 554 (2003) 133 [hep-ph/0212297] [INSPIRE].
B. Dehnadi, A.H. Hoang and V. Mateu, Bottom and charm mass determinations with a convergence test, JHEP 08 (2015) 155 [arXiv:1504.07638] [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Theoretical foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics: applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].
HPQCD collaboration, High-precision charm-quark mass from current-current correlators in lattice and continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].
C. McNeile et al., High-precision c and b masses and QCD coupling from current-current correlators in lattice and continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].
Y. Maezawa and P. Petreczky, Quark masses and strong coupling constant in 2 + 1 flavor QCD, Phys. Rev. D 94 (2016) 034507 [arXiv:1606.08798] [INSPIRE].
P. Petreczky and J.H. Weber, Strong coupling constant and heavy quark masses in (2 + 1)-flavor QCD, Phys. Rev. D 100 (2019) 034519 [arXiv:1901.06424] [INSPIRE].
K. Nakayama, B. Fahy and S. Hashimoto, Short-distance charmonium correlator on the lattice with Möbius domain-wall fermion and a determination of charm quark mass, Phys. Rev. D 94 (2016) 054507 [arXiv:1606.01002] [INSPIRE].
D. Boito and V. Mateu, Precise αs determination from charmonium sum rules, arXiv:1912.06237 [INSPIRE].
A.O.G. Kallen and A. Sabry, Fourth order vacuum polarization, Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N17 (1955) 1.
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Heavy quark vacuum polarization to three loops, Phys. Lett. B 371 (1996) 93 [hep-ph/9511430] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and \( O\left({\alpha}_S^2\right) \) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].
R. Boughezal, M. Czakon and T. Schutzmeier, Four-loop tadpoles: applications in QCD, Nucl. Phys. Proc. Suppl. 160 (2006) 160 [hep-ph/0607141] [INSPIRE].
M. Czakon and T. Schutzmeier, Double fermionic contributions to the heavy-quark vacuum polarization, JHEP 07 (2008) 001 [arXiv:0712.2762] [INSPIRE].
A. Maier, P. Maierhofer and P. Marquard, Higher moments of heavy quark correlators in the low energy limit at \( O\left({\alpha}_s^3\right), \)Nucl. Phys. B 797 (2008) 218 [arXiv:0711.2636] [INSPIRE].
A. Maier and P. Marquard, Validity of Padé approximations in vacuum polarization at three- and four-loop order, Phys. Rev. D 97 (2018) 056016 [arXiv:1710.03724] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and C. Sturm, Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD, Eur. Phys. J. C 48 (2006) 107 [hep-ph/0604234] [INSPIRE].
R. Boughezal, M. Czakon and T. Schutzmeier, Charm and bottom quark masses from perturbative QCD, Phys. Rev. D 74 (2006) 074006 [hep-ph/0605023] [INSPIRE].
C. Sturm, Moments of heavy quark current correlators at four-loop order in perturbative QCD, JHEP 09 (2008) 075 [arXiv:0805.3358] [INSPIRE].
A. Maier, P. Maierhofer and P. Marqaurd, The second physical moment of the heavy quark vector correlator at \( O\left({\alpha}_s^3\right), \) Phys. Lett. B 669 (2008) 88 [arXiv:0806.3405] [INSPIRE].
A. Maier, P. Maierhofer, P. Marquard and A.V. Smirnov, Low energy moments of heavy quark current correlators at four loops, Nucl. Phys. B 824 (2010) 1 [arXiv:0907.2117] [INSPIRE].
A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy quark vacuum polarization function at \( O\left({\alpha}_s^2\right) \) \( O\left({\alpha}_s^3\right), \)Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].
Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at \( O\left({\alpha}_s^3\right), \) Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].
D. Greynat and S. Peris, Resummation of threshold, low- and high-energy expansions for heavy-quark correlators, Phys. Rev. D 82 (2010) 034030 [Erratum ibid. D 82 (2010) 119907] [arXiv:1006.0643] [INSPIRE].
D. Greynat, P. Masjuan and S. Peris, Analytic reconstruction of heavy-quark two-point functions at \( O\left({\alpha}_s^3\right), \) Phys. Rev. D 85 (2012) 054008 [arXiv:1104.3425] [INSPIRE].
S.A. Larin and J.A.M. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].
T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].
K.G. Chetyrkin, Quark mass anomalous dimension to \( O\left({\alpha}_S^4\right), \) Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].
M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark mass and field anomalous dimensions to 𝒪\( \left({\alpha}_s^5\right), \) JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP 01 (2017) 081 [arXiv:1612.05512] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, The five-loop β-function for a general gauge group and anomalous dimensions beyond Feynman gauge, JHEP 10 (2017) 166 [arXiv:1709.07718] [INSPIRE].
V. Mateu and P.G. Ortega, Bottom and charm mass determinations from global fits to \( Q\overline{Q} \) bound states at N3 LO, JHEP 01 (2018) 122 [arXiv:1711.05755] [INSPIRE].
G. Rossum, Python reference manual, technical report, Amsterdam The Netherlands (1995).
Wolfram Research Inc., Mathematica, Version 12.0, Champaign, U.S.A. (2019).
V.A. Novikov et al., Charmonium and gluons: basic experimental facts and theoretical introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].
P.A. Baikov, V.A. Ilyin and V.A. Smirnov, Gluon condensate fit from the two loop correction to the coefficient function, Phys. Atom. Nucl. 56 (1993) 1527 [INSPIRE].
S. Narison and R. Tarrach, Higher dimensional renormalization group invariant vacuum condensates in quantum chromodynamics, Phys. Lett. 125B (1983) 217 [INSPIRE].
B.L. Ioffe, QCD at low energies, Prog. Part. Nucl. Phys. 56 (2006) 232 [hep-ph/0502148] [INSPIRE].
K. Chetyrkin et al., Precise charm- and bottom-quark masses: theoretical and experimental uncertainties, Theor. Math. Phys. 170 (2012) 217 [arXiv:1010.6157] [INSPIRE].
D.J. Broadhurst et al., Two loop gluon condensate contributions to heavy quark current correlators: exact results and approximations, Phys. Lett. B 329 (1994) 103 [hep-ph/9403274] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
J.H. Kuhn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
K.G. Chetyrkin et al., Addendum to “Charm and bottom quark masses: an update”, Phys. Rev. D 96 (2017) 116007 [arXiv:1710.04249] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
BES collaboration, Measurement of the total cross-section for hadronic production by e+ e− annihilation at energies between 2.6 GeV–5 GeV, Phys. Rev. Lett. 84 (2000) 594 [hep-ex/9908046] [INSPIRE].
BES collaboration, Measurements of the cross-section for e+ e− → hadrons at center-of-mass energies from 2 GeV to 5 GeV, Phys. Rev. Lett. 88 (2002) 101802 [hep-ex/0102003] [INSPIRE].
BES collaboration, Measurement of cross sections for D0\( \overline{D} \)0 and D+ D− production in e+ e− annihilation at \( \sqrt{s} \) = 3.773 GeV, Phys. Lett. B 603 (2004) 130 [hep-ex/0411013] [INSPIRE].
BES collaboration, Measurements of the cross-sections for e+ e− → hadrons at 3.650 GeV, 3.6648 GeV, 3.773 GeV and the branching fraction for ψ(3770) → non \( D\overline{D} \) , Phys. Lett. B 641 (2006) 145 [hep-ex/0605105] [INSPIRE].
M. Ablikim et al., Measurements of the continuum Ruds and R values in e+ e− annihilation in the energy region between 3.650 and 3.872 GeV, Phys. Rev. Lett. 97 (2006) 262001 [hep-ex/0612054] [INSPIRE].
BES collaboration, R value measurements for e+ e− annihilation at 2.60 GeV, 3.07 GeV and 3.65 GeV, Phys. Lett. B 677 (2009) 239 [arXiv:0903.0900] [INSPIRE].
A. Osterheld et al., Measurements of total hadronic and inclusive D∗ cross-sections in e+ e− annihilations between 3.87 GeV and 4.5 GeV, SLAC-PUB-4160 (1986).
C. Edwards et al., Hadron production in e+ e− annihilation from s1/2 = 5 GeV to 7.4 GeV, SLAC-PUB-5160 (1990).
CLEO collaboration, A Measurement of the total cross-section for e+ e− → hadrons at \( \sqrt{s} \) = 10.52 GeV, Phys. Rev. D 57 (1998) 1350 [hep-ex/9707018] [INSPIRE].
CLEO collaboration, Observation of new structure in the e+ e− annihilation cross-section above \( b\overline{b} \) threshold, Phys. Rev. Lett. 54 (1985) 381 [INSPIRE].
CLEO collaboration, Measurement of the total hadronic cross section in e+ e− annihilations below 10.56 GeV, Phys. Rev. D 76 (2007) 072008 [arXiv:0706.2813] [INSPIRE].
CLEO collaboration, Measurement of charm production cross sections in e+ e− annihilation at energies between 3.97 and 4.26 GeV, Phys. Rev. D 80 (2009) 072001 [arXiv:0801.3418] [INSPIRE].
A.E. Blinov et al., The measurement of R in e+ e− annihilation at center-of-mass energies between 7.2 GeV and 10.34 GeV, Z. Phys. C 70 (1996) 31 [INSPIRE].
L. Criegee and G. Knies, Review of e+ e− experiments with Pluto from 3 GeV to 31 GeV, Phys. Rept. 83 (1982) 151 [INSPIRE].
G.S. Abrams et al., Measurement of the parameters of the ψ′′ (3770) resonance, Phys. Rev. D 21 (1980) 2716 [INSPIRE].
K. Hagiwara, A.D. Martin, D. Nomura and T. Teubner, Predictions for g − 2 of the muon and αQED \( \left({M}_Z^2\right), \) Phys. Rev. D 69 (2004) 093003 [hep-ph/0312250] [INSPIRE].
J. Erler, P. Masjuan and H. Spiesberger, Charm quark mass with calibrated uncertainty, Eur. Phys. J. C 77 (2017) 99 [arXiv:1610.08531] [INSPIRE].
V.V. Anashin et al., Measurement of Ruds and R between 3.12 and 3.72 GeV at the KEDR detector, Phys. Lett. B 753 (2016) 533 [arXiv:1510.02667] [INSPIRE].
V.V. Anashin et al., Measurement of R between 1.84 and 3.05 GeV at the KEDR detector, Phys. Lett. B 770 (2017) 174 [arXiv:1610.02827] [INSPIRE].
KEDR collaboration, Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788 (2019) 42 [arXiv:1805.06235] [INSPIRE].
iminuit team, iminuit – a python interface to minuit, https://github.com/scikit-hep/iminuit.
F. James and M. Roos, Minuit — A system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343.
S. Groote and A.A. Pivovarov, Low-energy gluon contributions to the vacuum polarization of heavy quarks, JETP Lett. 75 (2002) 221 [hep-ph/0103047] [INSPIRE].
BaBar collaboration, Measurement of the e+ e− → \( b\overline{b} \) cross section between \( \sqrt{s} \) = 10.54 GeV and 11.20 GeV, Phys. Rev. Lett. 102 (2009) 012001 [arXiv:0809.4120] [INSPIRE].
S. Zafeiropoulos et al., Strong running coupling from the gauge sector of domain wall lattice QCD with physical quark masses, Phys. Rev. Lett. 122 (2019) 162002 [arXiv:1902.08148] [INSPIRE].
ETM collaboration, High statistics determination of the strong coupling constant in Taylor scheme and its OPE Wilson coefficient from lattice QCD with a dynamical charm, Phys. Rev. D 89 (2014) 014507 [arXiv:1310.3763] [INSPIRE].
R. Abbate et al., Thrust at N3 LL with power corrections and a precision global fit for αs(mZ ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
R. Abbate et al., Precision thrust cumulant moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].
A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, Precise determination of αs from the C -parameter distribution, Phys. Rev. D 91 (2015) 094018 [arXiv:1501.04111] [INSPIRE].
B. Chakraborty et al., High-precision quark masses and QCD coupling from nf = 4 lattice QCD, Phys. Rev. D 91 (2015) 054508 [arXiv:1408.4169] [INSPIRE].
ALPHA collaboration, QCD coupling from a nonperturbative determination of the three-flavor Λ parameter, Phys. Rev. Lett. 119 (2017) 102001 [arXiv:1706.03821] [INSPIRE].
TUMQCD collaboration, Determination of the QCD coupling from the static energy and the free energy, Phys. Rev. D 100 (2019) 114511 [arXiv:1907.11747] [INSPIRE].
H. Flacher et al., Revisiting the global electroweak fit of the standard model and beyond with Gfitter, Eur. Phys. J. C 60 (2009) 543 [Erratum ibid. C 71 (2011) 1718] [arXiv:0811.0009] [INSPIRE].
S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αs and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].
NNPDF collaboration, Precision determination of the strong coupling constant within a global PDF analysis, Eur. Phys. J. C 78 (2018) 408 [arXiv:1802.03398] [INSPIRE].
L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Uncertainties on αS in the MMHT2014 global PDF analysis and implications for SM predictions, Eur. Phys. J. C 75 (2015) 435 [arXiv:1506.05682] [INSPIRE].
D. Boito et al., Strong coupling from the revised ALEPH data for hadronic τ decays, Phys. Rev. D 91 (2015) 034003 [arXiv:1410.3528] [INSPIRE].
A. Pich and A. Rodríguez-Sánchez, Determination of the QCD coupling from ALEPH τ decay data, Phys. Rev. D 94 (2016) 034027 [arXiv:1605.06830] [INSPIRE].
D. Boito et al., Strong coupling from e+ e− → hadrons below charm, Phys. Rev. D 98 (2018) 074030 [arXiv:1805.08176] [INSPIRE].
A. Hoang, P. Ruiz-Femenia and M. Stahlhofen, Renormalization group improved bottom mass from ϒ sum rules at NNLL order, JHEP 10 (2012) 188 [arXiv:1209.0450] [INSPIRE].
M. Beneke, A. Maier, J. Piclum and T. Rauh, The bottom-quark mass from non-relativistic sum rules at NNNLO, Nucl. Phys. B 891 (2015) 42 [arXiv:1411.3132] [INSPIRE].
V. Mateu, P.G. Ortega, D.R. Entem and F. Fernández, Calibrating the naïve Cornell model with NRQCD, Eur. Phys. J. C 79 (2019) 323 [arXiv:1811.01982] [INSPIRE].
K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \( O\left({\alpha}_s^3\right) \) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].
Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 2001.11041
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Boito, D., Mateu, V. Precise determination of αs from relativistic quarkonium sum rules. J. High Energ. Phys. 2020, 94 (2020). https://doi.org/10.1007/JHEP03(2020)094
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2020)094