## Abstract

Unlike the standard entanglement entropy considered in the holographic con- text, *entwinement* measures entanglement between degrees of freedom that are not associated to a spatial subregion. Entwinement is defined for two-dimensional CFTs with a discrete ℤ_{N} gauge symmetry. Since the Hilbert space of these CFTs does not factorize into tensor products, even the entanglement entropy associated to a spatial subregion cannot be defined as the von Neumann entropy of a reduced density matrix. While earlier works considered embedding the density matrix into a larger, factorizing Hilbert space, we apply a gauge invariant approach by using a density matrix uniquely defined through its relation to the local algebra of observables. We furthermore obtain a fully gauge invariant definition of entwinement valid for general CFTs with ℤ_{N} gauge symmetry in terms of all observables acting on the degrees of freedom considered. Holographically, entwinement is dual to the length of non-minimal geodesics present for conical defects or black holes. In this context, we propose a definition of entwinement for thermal states dual to the BTZ black hole. Our results show that “entwinement is enough” to describe the full bulk geometry for the conical defect and provide strong hints that the same holds true for the BTZ black hole. Thus, it provides an alternative to holographic complexity for the theories considered.

## References

J.M. Maldacena,

*The Large N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [hep-th/9711200] [INSPIRE].S. Ryu and T. Takayanagi,

*Holographic derivation of entanglement entropy from AdS/CFT*,*Phys. Rev. Lett.***96**(2006) 181602 [hep-th/0603001] [INSPIRE].B. Swingle,

*Entanglement Renormalization and Holography*,*Phys. Rev.***D 86**(2012) 065007 [arXiv:0905.1317] [INSPIRE].M. Van Raamsdonk,

*Building up spacetime with quantum entanglement*,*Gen. Rel. Grav.***42**(2010) 2323 [arXiv:1005.3035] [INSPIRE].E. Bianchi and R.C. Myers,

*On the Architecture of Spacetime Geometry*,*Class. Quant. Grav.***31**(2014) 214002 [arXiv:1212.5183] [INSPIRE].V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer,

*Entwinement and the emergence of spacetime*,*JHEP***01**(2015) 048 [arXiv:1406.5859] [INSPIRE].B. Freivogel, R. Jefferson, L. Kabir, B. Mosk and I.-S. Yang,

*Casting Shadows on Holographic Reconstruction*,*Phys. Rev.***D 91**(2015) 086013 [arXiv:1412.5175] [INSPIRE].V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni,

*Holographic entanglement plateaux*,*JHEP***08**(2013) 092 [arXiv:1306.4004] [INSPIRE].L. Susskind,

*Entanglement is not enough*,*Fortsch. Phys.***64**(2016) 49 [arXiv:1411.0690] [INSPIRE].L. Susskind,

*Computational Complexity and Black Hole Horizons*,*Fortsch. Phys.***64**(2016) 44 [arXiv:1403.5695] [INSPIRE].T. Hartman and J. Maldacena,

*Time Evolution of Entanglement Entropy from Black Hole Interiors*,*JHEP***05**(2013) 014 [arXiv:1303.1080] [INSPIRE].D. Harlow,

*The Ryu-Takayanagi Formula from Quantum Error Correction*,*Commun. Math. Phys.***354**(2017) 865 [arXiv:1607.03901] [INSPIRE].M. Ohya and D. Petz,

*Quantum entropy and its use*, Texts and monographs in physics, Springer, Berlin u.a. (1993).V. Balasubramanian, B. Craps, T. De Jonckheere and G. Sárosi,

*Entanglement versus entwinement in symmetric product orbifolds*,*JHEP***01**(2019) 190 [arXiv:1806.02871] [INSPIRE].D. Stanford and L. Susskind,

*Complexity and Shock Wave Geometries*,*Phys. Rev.***D 90**(2014) 126007 [arXiv:1406.2678] [INSPIRE].A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,

*Holographic Complexity Equals Bulk Action?*,*Phys. Rev. Lett.***116**(2016) 191301 [arXiv:1509.07876] [INSPIRE].A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,

*Complexity, action and black holes*,*Phys. Rev.***D 93**(2016) 086006 [arXiv:1512.04993] [INSPIRE].S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski,

*Toward a Definition of Complexity for Quantum Field Theory States*,*Phys. Rev. Lett.***120**(2018) 121602 [arXiv:1707.08582] [INSPIRE].R. Jefferson and R.C. Myers,

*Circuit complexity in quantum field theory*,*JHEP***10**(2017) 107 [arXiv:1707.08570] [INSPIRE].R. Khan, C. Krishnan and S. Sharma,

*Circuit Complexity in Fermionic Field Theory*,*Phys. Rev.***D 98**(2018) 126001 [arXiv:1801.07620] [INSPIRE].L. Hackl and R.C. Myers,

*Circuit complexity for free fermions*,*JHEP***07**(2018) 139 [arXiv:1803.10638] [INSPIRE].S. Chapman et al.,

*Complexity and entanglement for thermofield double states*,*SciPost Phys.***6**(2019) 034 [arXiv:1810.05151] [INSPIRE].K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida,

*Holographic Complexity Equals Which Action?*,*JHEP***02**(2019) 160 [arXiv:1901.00014] [INSPIRE].V. Balasubramanian, A. Bernamonti, B. Craps, T. De Jonckheere and F. Galli,

*Entwinement in discretely gauged theories*,*JHEP***12**(2016) 094 [arXiv:1609.03991] [INSPIRE].P.H. Ginsparg,

*Applied conformal field theory*, in*Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena*, Les Houches, France, June 28–August 5, 1988, pp. 1–168 (1988) [hep-th/9108028] [INSPIRE].L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker,

*The Conformal Field Theory of Orbifolds*,*Nucl. Phys.***B 282**(1987) 13 [INSPIRE].P.V. Buividovich and M.I. Polikarpov,

*Entanglement entropy in gauge theories and the holographic principle for electric strings*,*Phys. Lett.***B 670**(2008) 141 [arXiv:0806.3376] [INSPIRE].W. Donnelly,

*Decomposition of entanglement entropy in lattice gauge theory*,*Phys. Rev.***D 85**(2012) 085004 [arXiv:1109.0036] [INSPIRE].H. Casini, M. Huerta and J.A. Rosabal,

*Remarks on entanglement entropy for gauge fields*,*Phys. Rev.***D 89**(2014) 085012 [arXiv:1312.1183] [INSPIRE].D. Radicevic,

*Notes on Entanglement in Abelian Gauge Theories*, arXiv:1404.1391 [INSPIRE].S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. Shiba and H. Tasaki,

*On the definition of entanglement entropy in lattice gauge theories*,*JHEP***06**(2015) 187 [arXiv:1502.04267] [INSPIRE].S. Ghosh, R.M. Soni and S.P. Trivedi,

*On The Entanglement Entropy For Gauge Theories*,*JHEP***09**(2015) 069 [arXiv:1501.02593] [INSPIRE].R.M. Soni and S.P. Trivedi,

*Aspects of Entanglement Entropy for Gauge Theories*,*JHEP***01**(2016) 136 [arXiv:1510.07455] [INSPIRE].E. Witten,

*APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory*,*Rev. Mod. Phys.***90**(2018) 045003 [arXiv:1803.04993] [INSPIRE].E.A. Mazenc and D. Ranard,

*Target Space Entanglement Entropy*, arXiv:1910.07449 [INSPIRE].M.A. Nielsen and I.L. Chuang,

*Quantum computation and quantum information*, Cambridge University Press, Cambridge (2007).H. Barnum, G. Ortiz, R. Somma and L. Viola,

*A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables*,*Int. J. Theor. Phys.***44**(2005) 2127 [quant-ph/0506099].H. Barnum, E. Knill, G. Ortiz and L. Viola,

*Generalizations of entanglement based on coherent states and convex sets*,*Phys. Rev.***A 68**(2003) 032308 [quant-ph/0207149].M. Bañados, C. Teitelboim and J. Zanelli,

*The Black hole in three-dimensional space-time*,*Phys. Rev. Lett.***69**(1992) 1849 [hep-th/9204099] [INSPIRE].J.M. Maldacena and A. Strominger,

*AdS*_{3}*black holes and a stringy exclusion principle*,*JHEP***12**(1998) 005 [hep-th/9804085] [INSPIRE].P. Calabrese and J.L. Cardy,

*Entanglement entropy and quantum field theory*,*J. Stat. Mech.***0406**(2004) P06002 [hep-th/0405152] [INSPIRE].T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin,

*Holographic entanglement beyond classical gravity*,*JHEP***09**(2013) 109 [arXiv:1306.4682] [INSPIRE].J.M. Maldacena,

*Eternal black holes in anti-de Sitter*,*JHEP***04**(2003) 021 [hep-th/0106112] [INSPIRE].A. Strominger and C. Vafa,

*Microscopic origin of the Bekenstein-Hawking entropy*,*Phys. Lett.***B 379**(1996) 99 [hep-th/9601029] [INSPIRE].J. de Boer,

*Six-dimensional supergravity on S*^{3}*× AdS*_{3}*and*2*-D conformal field theory*,*Nucl. Phys.***B 548**(1999) 139 [hep-th/9806104] [INSPIRE].N. Seiberg and E. Witten,

*The D*1*/D*5*system and singular CFT*,*JHEP***04**(1999) 017 [hep-th/9903224] [INSPIRE].F. Larsen and E.J. Martinec, U(1)

*charges and moduli in the D*1*-D*5*system*,*JHEP***06**(1999) 019 [hep-th/9905064] [INSPIRE].V. Balasubramanian, P. Kraus and M. Shigemori,

*Massless black holes and black rings as effective geometries of the D1-D5 system*,*Class. Quant. Grav.***22**(2005) 4803 [hep-th/0508110] [INSPIRE].C.T. Asplund and S.G. Avery,

*Evolution of Entanglement Entropy in the D1-D5 Brane System*,*Phys. Rev.***D 84**(2011) 124053 [arXiv:1108.2510] [INSPIRE].S. Giusto and R. Russo,

*Entanglement Entropy and D1-D5 geometries*,*Phys. Rev.***D 90**(2014) 066004 [arXiv:1405.6185] [INSPIRE].S. Giusto, E. Moscato and R. Russo,

*AdS*_{3}*holography for*1*/*4*and*1*/*8*BPS geometries*,*JHEP***11**(2015) 004 [arXiv:1507.00945] [INSPIRE].A. Bombini and G. Fardelli,

*Holographic entanglement entropy and complexity of microstate geometries*, arXiv:1910.01831 [INSPIRE].K. Skenderis and M. Taylor,

*The fuzzball proposal for black holes*,*Phys. Rept.***467**(2008) 117 [arXiv:0804.0552] [INSPIRE].S.D. Mathur,

*Fuzzballs and the information paradox: A Summary and conjectures*, arXiv:0810.4525 [INSPIRE].H. Barnum, E. Knill, G. Ortiz, R. Somma and L. Viola,

*A Subsystem-Independent Generalization of Entanglement*,*Phys. Rev. Lett.***92**(2004) 107902 [quant-ph/0305023] [INSPIRE].Y.S. Li, B. Zeng, X.S. Liu and G.L. Long,

*Entanglement in a two-identical-particle system*,*Phys. Rev.***A 64**(2001) 054302 [quant-ph/0104101].K. Eckert, J. Schliemann, D. Bruß and M. Lewenstein,

*Quantum Correlations in Systems of Indistinguishable Particles*,*Annals Phys.***299**(2002) 88 [quant-ph/0203060].R. Paškauskas and L. You,

*Quantum correlations in two-boson wave functions*,*Phys. Rev.***A 64**(2001) 042310 [quant-ph/0106117].N. Killoran, M. Cramer and M.B. Plenio,

*Extracting Entanglement from Identical Particles*,*Phys. Rev. Lett.***112**(2014) 150501 [arXiv:1312.4311].Y. Shi,

*Quantum entanglement of identical particles*,*Phys. Rev.***A 67**(2003) 024301 [quant-ph/0205069] [INSPIRE].H.M. Wiseman and J.A. Vaccaro,

*Entanglement of Indistinguishable Particles Shared between Two Parties*,*Phys. Rev. Lett.***91**(2003) 097902 [quant-ph/0210002].G. Ghirardi and L. Marinatto,

*General criterion for the entanglement of two indistinguishable particles*,*Phys. Rev.***A 70**(2004) 012109 [quant-ph/0401065].G. Tóth and O. Gühne,

*Entanglement and Permutational Symmetry*,*Phys. Rev. Lett.***102**(2009) 170503 [arXiv:0812.4453].M. Bañados,

*Three-dimensional quantum geometry and black holes*,*AIP Conf. Proc.***484**(1999) 147 [hep-th/9901148] [INSPIRE].V.E. Hubeny, M. Rangamani and T. Takayanagi,

*A Covariant holographic entanglement entropy proposal*,*JHEP***07**(2007) 062 [arXiv:0705.0016] [INSPIRE].V.E. Hubeny,

*Covariant Residual Entropy*,*JHEP***09**(2014) 156 [arXiv:1406.4611] [INSPIRE].B. Czech, L. Lamprou, S. McCandlish and J. Sully,

*Integral Geometry and Holography*,*JHEP***10**(2015) 175 [arXiv:1505.05515] [INSPIRE].R. Abt et al.,

*Topological Complexity in AdS*_{3}*/C F T*2 ,*Fortsch. Phys.***66**(2018) 1800034 [arXiv:1710.01327] [INSPIRE].R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe,

*Holographic Subregion Complexity from Kinematic Space*,*JHEP***01**(2019) 012 [arXiv:1805.10298] [INSPIRE].S.H. Shenker and D. Stanford,

*Black holes and the butterfly effect*,*JHEP***03**(2014) 067 [arXiv:1306.0622] [INSPIRE].S.H. Shenker and D. Stanford,

*Multiple Shocks*,*JHEP***12**(2014) 046 [arXiv:1312.3296] [INSPIRE].S. Leichenauer,

*Disrupting Entanglement of Black Holes*,*Phys. Rev.***D 90**(2014) 046009 [arXiv:1405.7365] [INSPIRE].D.A. Roberts, D. Stanford and L. Susskind,

*Localized shocks*,*JHEP***03**(2015) 051 [arXiv:1409.8180] [INSPIRE].Y.S. Weinstein and L. Viola,

*Generalized entanglement as a natural framework for exploring quantum chaos*,*EPL (Europhys. Lett.)***76**(2006) 746 [quant-ph/0603071].

##
**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

ArXiv ePrint: 1910.05352

## Rights and permissions

**Open Access** . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## About this article

### Cite this article

Erdmenger, J., Gerbershagen, M. Entwinement as a possible alternative to complexity.
*J. High Energ. Phys.* **2020**, 82 (2020). https://doi.org/10.1007/JHEP03(2020)082

Received:

Revised:

Accepted:

Published:

DOI: https://doi.org/10.1007/JHEP03(2020)082

### Keywords

- AdS-CFT Correspondence
- Gauge-gravity correspondence