Limits on interactions between weakly interacting massive particles and nucleons obtained with NaI(Tl) crystal detectors


Limits on the cross section for weakly interacting massive particles (WIMPs) elastic scattering on nuclei in NaI(Tl) detectors at the Yangyang Underground Laboratory are obtained from a 2967.4 kg·day data exposure. The nuclei recoiling from the scattering process are identified by the pulse shape of the scintillation light signals that they produce. The data are consistent with a no nuclear-recoil hypothesis, and WIMP-mass-dependent 90% confidence-level upper-limits are set on WIMP-nuclei elastic scattering cross sections. These limits partially exclude the DAMA/LIBRA allowed region for WIMP-sodium interactions with the same NaI(Tl) target material. The 90% confidence level upper limit on the WIMP-nucleon spin-independent cross section is 3.26×10−4 pb for a WIMP mass of 10 GeV/c2.

A preprint version of the article is available at ArXiv.


  1. [1]

    D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].

  2. [2]

    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  3. [3]

    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

  5. [5]

    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

  6. [6]

    DAMA collaboration, Search for WIMP annual modulation signature: results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis, Phys. Lett. B 480 (2000) 23 [INSPIRE].

  7. [7]

    DAMA collaboration, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].

  8. [8]

    DAMA, LIBRA collaboration, New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

  9. [9]

    R. Bernabei et al., Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J. C 73 (2013) 2648 [arXiv:1308.5109] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    R. Bernabei et al., First model independent results from DAMA/LIBRA-phase2, Nucl. Phys. Atom. Ener. 19 (2018) 307 [arXiv:1805.10486] [INSPIRE].

    Article  Google Scholar 

  11. [11]

    C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    S.C. Kim et al., New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors, Phys. Rev. Lett. 108 (2012) 181301 [arXiv:1204.2646] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  14. [14]

    PandaX-II collaboration, Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].

  15. [15]

    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

  16. [16]

    DM-Ice collaboration, First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17, Phys. Rev. D 95 (2017) 032006 [arXiv:1602.05939] [INSPIRE].

  17. [17]

    J. Amaré et al., Preliminary results of ANAIS-25, Nucl. Instrum. Meth. A 742 (2014) 187 [arXiv:1308.3478] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    J. Xu, F. Calaprice, F. Froborg, E. Shields and B. Suerfu, SABREa test of DAMA with high-purity NaI(Tl) crystals, AIP Conf. Proc. 1672 (2015) 040001 [INSPIRE].

    Article  Google Scholar 

  19. [19]

    P. Adhikari et al., Understanding internal backgrounds in NaI(Tl) crystals toward a 200 kg array for the KIMS-NaI experiment, Eur. Phys. J. C 76 (2016) 185 [arXiv:1510.04519] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    PICO-LON collaboration, Dark matter search project PICO-LON, J. Phys. Conf. Ser. 718 (2016) 042022 [arXiv:1512.04645] [INSPIRE].

  21. [21]

    COSINUS collaboration, Results from the first cryogenic NaI detector for the COSINUS project, 2017 JINST 12 P11007 [arXiv:1705.11028] [INSPIRE].

  22. [22]

    G. Adhikari et al., Initial performance of the COSINE-100 experiment, Eur. Phys. J. C 78 (2018) 107 [arXiv:1710.05299] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Zinteractions, Phys. Rev. D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    B.M. Roberts, V.A. Dzuba, V.V. Flambaum, M. Pospelov and Y.V. Stadnik, Dark matter scattering on electrons: accurate calculations of atomic excitations and implications for the DAMA signal, Phys. Rev. D 93 (2016) 115037 [arXiv:1604.04559] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    K.W. Kim et al., Tests on NaI(Tl) crystals for WIMP search at the Yangyang underground laboratory, Astropart. Phys. 62 (2015) 249 [arXiv:1407.1586] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    G. Adhikari et al., Understanding NaI(Tl) crystal background for dark matter searches, Eur. Phys. J. C 77 (2017) 437 [arXiv:1703.01982] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    H.S. Lee et al., Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal, JHEP 08 (2015) 093 [arXiv:1503.05253] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    KIMS collaboration, Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors, Phys. Rev. Lett. 99 (2007) 091301 [arXiv:0704.0423] [INSPIRE].

  29. [29]

    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    Kims collaboration, First limit on WIMP cross section with low background CsI(Tl) crystal detector, Phys. Lett. B 633 (2006) 201 [astro-ph/0509080] [INSPIRE].

  31. [31]

    H.S. Lee et al., Development of low-background CsI(Tl) crystals for WIMP search, Nucl. Instrum. Meth. A 571 (2007) 644 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    UK Dark Matter collaboration, Limits on WIMP cross-sections from the NAIAD experiment at the Boulby underground laboratory, Phys. Lett. B 616 (2005) 17 [hep-ex/0504031] [INSPIRE].

  33. [33]

    DAMA collaboration, The DAMA/LIBRA apparatus, Nucl. Instrum. Meth. A 592 (2008) 297 [arXiv:0804.2738] [INSPIRE].

  34. [34]

    R. Bernabei et al., Performances of the new high quantum efficiency PMTs in DAMA/LIBRA, 2012 JINST 7 P03009 [INSPIRE].

  35. [35]

    H.W. Joo et al., Quenching factor measurement for NaI(Tl) scintillation crystal, Astropart. Phys. 108 (2019) 50 [arXiv:1809.10310] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    ENDF/B-VII.1 webpage,, U.S.A. (2011).

  37. [37]

    H.J. Kim et al., Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches, Astropart. Phys. 20 (2004) 549 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    J.H. Lee et al., Measurement of the quenching and channeling effects in a CsI crystal used for a WIMP search, Nucl. Instrum. Meth. A 782 (2015) 133 [arXiv:1502.03800] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    H.S. Lee et al., Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals, 2014 JINST 9 P11015 [arXiv:1409.0948] [INSPIRE].

  40. [40]

    V.A. Kudryavtsev et al., Study and suppression of anomalous fast events in inorganic scintillators for dark matter searches, Astropart. Phys. 17 (2002) 401 [hep-ex/0109013] [INSPIRE].

  41. [41]

    S.C. Kim et al., Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator, Astropart. Phys. 35 (2012) 781 [arXiv:1108.4353] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    CRESST collaboration, A detector module with highly efficient surface-alpha event rejection operated in CRESST-II phase 2, Eur. Phys. J. C 75 (2015) 352 [arXiv:1410.1753] [INSPIRE].

  43. [43]

    K.W. Kim et al., Measurement of low-energy events due to 222 Rn daughter contamination on the surface of a NaI(Tl) crystal, Astropart. Phys. 102 (2018) 51 [arXiv:1801.06948] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    G.F. Knoll, Radiation detection and measurement, John Wiley and Sons, Hoboken, NJ, U.S.A. (2010) [INSPIRE].

    Google Scholar 

  45. [45]

    M.J. Weber, S.E. Derenzo and W.W. Moses, Measurements of ultrafast scintillation rise times: evidence of energy transfer mechanisms, J. Lumin. 87-89 (2000) 830.

  46. [46]

    B. Ahmed et al., The NAIAD experiment for WIMP searches at Boulby mine and recent results, Astropart. Phys. 19 (2003) 691 [hep-ex/0301039] [INSPIRE].

  47. [47]

    H.S. Lee, Dark matter search with CsI(Tl) crystals, Ph.D. thesis, Seoul Natl. U., Seoul, Korea (2007).

  48. [48]

    A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. [49]

    R. Bernabei et al., New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso, Phys. Lett. B 389 (1996) 757 [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    J.I. Collar, Quenching and channeling of nuclear recoils in NaI(Tl): implications for dark-matter searches, Phys. Rev. C 88 (2013) 035806 [arXiv:1302.0796] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    J. Xu et al., Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold, Phys. Rev. C 92 (2015) 015807 [arXiv:1503.07212] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    COSINE-100 collaboration, Background model for the NaI(Tl) crystals in COSINE-100, Eur. Phys. J. C 78 (2018) 490 [arXiv:1804.05167] [INSPIRE].

  53. [53]

    G. Adhikari et al., An experiment to search for dark-matter interactions using sodium iodide detectors, Nature 564 (2018) 83 [Erratum ibid. 566 (2019) E2] [INSPIRE].

  54. [54]

    J. Amaré et al., Performance of ANAIS-112 experiment after the first year of data taking, Eur. Phys. J. C 79 (2019) 228 [arXiv:1812.01472] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information




Corresponding author

Correspondence to H. S. Lee.

Additional information

ArXiv ePrint: 1806.06499

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K.W., Adhikari, G., Adhikari, P. et al. Limits on interactions between weakly interacting massive particles and nucleons obtained with NaI(Tl) crystal detectors. J. High Energ. Phys. 2019, 194 (2019).

Download citation


  • Dark matter
  • Dark Matter and Double Beta Decay (experiments)