Partial Deconfinement


We argue that the confined and deconfined phases in gauge theories are connected by a partially deconfined phase (i.e. SU(M) in SU(N), where M < N, is deconfined), which can be stable or unstable depending on the details of the theory. When this phase is unstable, it is the gauge theory counterpart of the small black hole phase in the dual string theory. Partial deconfinement is closely related to the Gross-Witten-Wadia transition, and is likely to be relevant to the QCD phase transition.

The mechanism of partial deconfinement is related to a generic property of a class of systems. As an instructive example, we demonstrate the similarity between the Yang-Mills theory/string theory and a mathematical model of the collective behavior of ants [Beekman et al., Proceedings of the National Academy of Sciences, 2001]. By identifying the D-brane, open string and black hole with the ant, pheromone and ant trail, the dynamics of two systems closely resemble with each other, and qualitatively the same phase structures are obtained.

A preprint version of the article is available at ArXiv.


  1. [1]

    G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].

  2. [2]

    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorndeconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    M. Hanada and J. Maltz, A proposal of the gauge theory description of the small Schwarzschild black hole in AdS 5×S 5, JHEP 02 (2017) 012 [arXiv:1608.03276] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. [7]

    D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP 09 (2018) 054 [arXiv:1806.05729] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    C.T. Asplund and D. Berenstein, Small AdS black holes from SYM, Phys. Lett. B 673 (2009) 264 [arXiv:0809.0712] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    E. Berkowitz, M. Hanada and J. Maltz, Chaos in Matrix Models and Black Hole Evaporation, Phys. Rev. D 94 (2016) 126009 [arXiv:1602.01473] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. [10]

    E. Berkowitz, M. Hanada and J. Maltz, A microscopic description of black hole evaporation via holography, Int. J. Mod. Phys. D 25 (2016) 1644002 [arXiv:1603.03055] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  11. [11]

    J. Liddle and M. Teper, The deconfining phase transition in D = 2+1 SU(N) gauge theories, arXiv:0803.2128 [INSPIRE].

  12. [12]

    B. Lucini, M. Teper and U. Wenger, The high temperature phase transition in SU(N) gauge theories, JHEP 01 (2004) 061 [hep-lat/0307017] [INSPIRE].

  13. [13]

    L. Álvarez-Gaumé, P. Basu, M. Mariño and S.R. Wadia, Blackhole/String Transition for the Small Schwarzschild Blackhole of AdS 5 x S 5 and Critical Unitary Matrix Models, Eur. Phys. J. C 48 (2006) 647 [hep-th/0605041] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  14. [14]

    M. Beekman, D.J.T. Sumpter and F.L.W. Ratnieks, Phase transition between disordered and ordered foraging in Pharaohs ants, Proc. Nat. Acad. Sci. 98 (2001) 9703.

    ADS  Article  Google Scholar 

  15. [15]

    L. Kofman, A.D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, Beauty is attractive: Moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030 [hep-th/0403001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    S.R. Wadia, A Study of U(N) Lattice Gauge Theory in 2-dimensions, arXiv:1212.2906 [INSPIRE].

  19. [19]

    S.R. Wadia, N = Infinity Phase Transition in a Class of Exactly Soluble Model Lattice Gauge Theories, Phys. Lett. 93B (1980) 403 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3 (1965) 147 [INSPIRE].

    Google Scholar 

  21. [21]

    B. Sundborg, Strings hot fast and heavy, Institute of Theoretical Physics, (1988),

  22. [22]

    L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].

  23. [23]

    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    M. Hanada, J. Maltz and L. Susskind, Deconfinement transition as black hole formation by the condensation of QCD strings, Phys. Rev. D 90 (2014) 105019 [arXiv:1405.1732] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    Y. Hidaka and R.D. Pisarski, Zero Point Energy of Renormalized Wilson Loops, Phys. Rev. D 80 (2009) 074504 [arXiv:0907.4609] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    S. Gupta, K. Huebner and O. Kaczmarek, Renormalized Polyakov loops in many representations, Phys. Rev. D 77 (2008) 034503 [arXiv:0711.2251] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    A. Mykkanen, M. Panero and K. Rummukainen, Casimir scaling and renormalization of Polyakov loops in large-N gauge theories, JHEP 05 (2012) 069 [arXiv:1202.2762] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    A. Dumitru, J. Lenaghan and R.D. Pisarski, Deconfinement in matrix models about the Gross-Witten point, Phys. Rev. D 71 (2005) 074004 [hep-ph/0410294] [INSPIRE].

  29. [29]

    H. Nishimura, R.D. Pisarski and V.V. Skokov, Finite-temperature phase transitions of third and higher order in gauge theories at large N, Phys. Rev. D 97 (2018) 036014 [arXiv:1712.04465] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. [33]

    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. [34]

    N. Kawahara, J. Nishimura and S. Takeuchi, Phase structure of matrix quantum mechanics at finite temperature, JHEP 10 (2007) 097 [arXiv:0706.3517] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    M.S. Costa, L. Greenspan, J. Penedones and J. Santos, Thermodynamics of the BMN matrix model at strong coupling, JHEP 03 (2015) 069 [arXiv:1411.5541] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    J. Maldacena and A. Milekhin, To gauge or not to gauge?, JHEP 04 (2018) 084 [arXiv:1802.00428] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. [38]

    E. Berkowitz, E. Rinaldi, M. Hanada, G. Ishiki, S. Shimasaki and P. Vranas, Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D 94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    E. Berkowitz, M. Hanada, E. Rinaldi and P. Vranas, Gauged And Ungauged: A Nonperturbative Test, JHEP 06 (2018) 124 [arXiv:1802.02985] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  40. [40]

    O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1+1 dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav. 21 (2004) 5169 [hep-th/0406210] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    S. Catterall, A. Joseph and T. Wiseman, Thermal phases of D1-branes on a circle from lattice super Yang-Mills, JHEP 12 (2010) 022 [arXiv:1008.4964] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    S. Catterall, R.G. Jha, D. Schaich and T. Wiseman, Testing holography using lattice super-Yang-Mills theory on a 2-torus, Phys. Rev. D 97 (2018) 086020 [arXiv:1709.07025] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. [43]

    O.J.C. Dias, J.E. Santos and B. Way, Localised and nonuniform thermal states of super-Yang-Mills on a circle, JHEP 06 (2017) 029 [arXiv:1702.07718] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    T. Harmark, Small black holes on cylinders, Phys. Rev. D 69 (2004) 104015 [hep-th/0310259] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. [45]

    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].

  47. [47]

    S. Muroya, A. Nakamura, C. Nonaka and T. Takaishi, Lattice QCD at finite density: An introductory review, Prog. Theor. Phys. 110 (2003) 615 [hep-lat/0306031] [INSPIRE].

  48. [48]

    N. Jokela, A. Pönni and A. Vuorinen, Small black holes in global AdS spacetime, Phys. Rev. D 93 (2016) 086004 [arXiv:1508.00859] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    O.J. Dias, J.E. Santos and B. Way, Localised AdS 5 × S 5 Black Holes, Phys. Rev. Lett. 117 (2016) 151101 [arXiv:1605.04911] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    L.G. Yaffe, Large N phase transitions and the fate of small Schwarzschild-AdS black holes, Phys. Rev. D 97 (2018) 026010 [arXiv:1710.06455] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    D. Marolf, Microcanonical Path Integrals and the Holography of small Black Hole Interiors, JHEP 09 (2018) 114 [arXiv:1808.00394] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    D. Schaich, Progress and prospects of lattice supersymmetry, in 36th International Symposium on Lattice Field Theory (Lattice 2018) East Lansing, MI, United States, July 22–28, 2018, 2018, arXiv:1810.09282 [INSPIRE].

  53. [53]

    M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for Matrix theory correlation functions, JHEP 12 (2011) 020 [arXiv:1108.5153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    D. Berenstein, Negative specific heat from non-planar interactions and small black holes in AdS/CFT, arXiv:1810.07267 [INSPIRE].

  55. [55]

    D. Sumpter, Soccermatics: mathematical adventures in the beautiful game, Bloomsbury Publishing, (2016).

  56. [56]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Masanori Hanada.

Additional information

ArXiv ePrint: 1812.05494

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanada, M., Ishiki, G. & Watanabe, H. Partial Deconfinement. J. High Energ. Phys. 2019, 145 (2019).

Download citation


  • Black Holes in String Theory
  • Gauge-gravity correspondence