Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Joint two-dimensional resummation in qT and 0-jettiness at NNLL

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 March 2019
  • Volume 2019, article number 124, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Joint two-dimensional resummation in qT and 0-jettiness at NNLL
Download PDF
  • Gillian Lustermans1,2,
  • Johannes K. L. Michel3,
  • Frank J. Tackmann3 &
  • …
  • Wouter J. Waalewijn1,2 
  • 406 Accesses

  • 29 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider Drell-Yan production pp → Z/γ∗ → ℓ+ℓ− with the simultaneous measurement of the Z-boson transverse momentum qT and 0-jettiness \( {\mathcal{T}}_0 \). Since both observables resolve the initial-state QCD radiation, the double-differential cross section in qT and \( {\mathcal{T}}_0 \) contains Sudakov double logarithms of both qT/Q and \( {\mathcal{T}}_0/Q \), where Q ∼ mZ is the dilepton invariant mass. We simultaneously resum the logarithms in qT and \( {\mathcal{T}}_0 \) to next-to-next-to-leading logarithmic order (NNLL) matched to next-to-leading fixed order (NLO). Our results provide the first genuinely two-dimensional analytic Sudakov resummation for initial-state radiation. Integrating the resummed double-differential spectrum with an appropriate scale choice over either \( {\mathcal{T}}_0 \) or qT recovers the corresponding single-differential resummation for the remaining variable. We discuss in detail the required effective field theory setups and their combination using two-dimensional resummation profile scales. We also introduce a new method to perform the qT resummation where the underlying resummation is carried out in impact-parameter space, but is consistently turned off depending on the momentum-space target value for qT. Our methods apply at any order and for any color-singlet production process, such that our results can be systematically extended when the relevant perturbative ingredients become available.

Article PDF

Download to read the full article text

Similar content being viewed by others

Drell-Yan qT resummation of fiducial power corrections at N3LL

Article Open access 12 April 2021

Zero-jettiness resummation for top-quark pair production at the LHC

Article Open access 13 January 2022

Next-to SV resummed Drell–Yan cross section beyond leading-logarithm

Article Open access 18 March 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  2. T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  3. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

  4. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  5. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  6. M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni and G.P. Salam, Logarithmic accuracy of parton showers: a fixed-order study, JHEP 09 (2018) 033 [arXiv:1805.09327] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].

  8. J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].

  9. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].

  10. A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].

  11. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

  12. A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e − annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].

  13. W. Bizon, P.F. Monni, E. Re, L. Rottoli and P. Torrielli, Momentum-space resummation for transverse observables and the Higgs p ⊥ at N 3 LL + N N LO, JHEP 02 (2018) 108 [arXiv:1705.09127] [INSPIRE].

  14. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

  15. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  16. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

  17. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  18. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

  19. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

  20. H.-n. Li, Unification of the k T and threshold resummations, Phys. Lett. B 454 (1999) 328 [hep-ph/9812363] [INSPIRE].

  21. E. Laenen, G.F. Sterman and W. Vogelsang, Recoil and threshold corrections in short distance cross-sections, Phys. Rev. D 63 (2001) 114018 [hep-ph/0010080] [INSPIRE].

  22. A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation in electroweak boson production, Phys. Rev. D 66 (2002) 014011 [hep-ph/0202251] [INSPIRE].

  23. A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation for Higgs production, Phys. Rev. D 69 (2004) 014012 [hep-ph/0309264] [INSPIRE].

  24. G. Lustermans, W.J. Waalewijn and L. Zeune, Joint transverse momentum and threshold resummation beyond NLL, Phys. Lett. B 762 (2016) 447 [arXiv:1605.02740] [INSPIRE].

  25. S. Marzani and V. Theeuwes, Vector boson production in joint resummation, JHEP 02 (2017) 127 [arXiv:1612.01432] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C. Muselli, S. Forte and G. Ridolfi, Combined threshold and transverse momentum resummation for inclusive observables, JHEP 03 (2017) 106 [arXiv:1701.01464] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Marzani, Combining Q T and small-x resummations, Phys. Rev. D 93 (2016) 054047 [arXiv:1511.06039] [INSPIRE].

  28. C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

  29. P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and Resummation for Generic Hierarchies between Jets, JHEP 08 (2016) 002 [arXiv:1601.05088] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross Sections: Measuring Two Angularities on a Single Jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].

  31. M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D.W. Kolodrubetz, P. Pietrulewicz, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization for Jet Radius Logarithms in Jet Mass Spectra at the LHC, JHEP 12 (2016) 054 [arXiv:1605.08038] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Hornig, D. Kang, Y. Makris and T. Mehen, Transverse Vetoes with Rapidity Cutoff in SCET, JHEP 12 (2017) 043 [arXiv:1708.08467] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.K.L. Michel, P. Pietrulewicz and F.J. Tackmann, Jet Veto Resummation with Jet Rapidity Cuts, arXiv:1810.12911 [INSPIRE].

  35. X. Liu, S.-O. Moch and F. Ringer, Threshold and jet radius joint resummation for single-inclusive jet production, Phys. Rev. Lett. 119 (2017) 212001 [arXiv:1708.04641] [INSPIRE].

    Article  ADS  Google Scholar 

  36. X. Liu, S.-O. Moch and F. Ringer, Phenomenology of single-inclusive jet production with jet radius and threshold resummation, Phys. Rev. D 97 (2018) 056026 [arXiv:1801.07284] [INSPIRE].

  37. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

  38. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Soft Function for Exclusive N-Jet Production at Hadron Colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].

  39. D. Bertolini et al., Soft Functions for Generic Jet Algorithms and Observables at Hadron Colliders, JHEP 07 (2017) 099 [arXiv:1704.08262] [INSPIRE].

  40. M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

  41. A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].

  42. Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].

  43. A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03 (2018) 036 [arXiv:1501.03754] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].

    Article  ADS  Google Scholar 

  46. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

  47. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

  48. ATLAS collaboration, Measurement of event-shape observables in Z → ℓ + ℓ − events in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 375 [arXiv:1602.08980] [INSPIRE].

  49. S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at N N LL ′ + N N LO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].

  51. M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J.R. Gaunt and M. Stahlhofen, The Fully-Differential Quark Beam Function at NNLO, JHEP 12 (2014) 146 [arXiv:1409.8281] [INSPIRE].

    Article  ADS  Google Scholar 

  53. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Beam Thrust Cross Section for Drell-Yan at NNLL Order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].

  54. M.A. Ebert et al., SCETlib: A C++ Package for Numerical Calculations in QCD and Soft-Collinear Effective Theory, DESY-17-099 (2018).

  55. J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

  56. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

  57. J.M. Campbell, R.K. Ellis and W.T. Giele, A Multi-Threaded Version of MCFM, Eur. Phys. J. C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].

  58. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

  59. A. Jain, M. Procura and W.J. Waalewijn, Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative k T , JHEP 04 (2012) 132 [arXiv:1110.0839] [INSPIRE].

  60. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015) 189 [arXiv:1507.01652] [INSPIRE].

    Article  ADS  Google Scholar 

  63. I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].

  65. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for α s(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

  66. S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-Dependent Jet Vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].

  67. I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at N N LL ′ + N N LO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].

  68. J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    Article  ADS  Google Scholar 

  69. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].

  72. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

  73. T. Becher and M. Neubert, Drell-Yan Production at Small q T , Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

  74. M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q T And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].

  75. S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].

  76. P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. G. Parisi and R. Petronzio, Small Transverse Momentum Distributions in Hard Processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].

  79. J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].

  80. J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].

  81. M.A. Ebert, I.W. Stewart and Y. Zhao, Determining the Nonperturbative Collins-Soper Kernel From Lattice QCD, Phys. Rev. D 99 (2019) 034505 [arXiv:1811.00026] [INSPIRE].

  82. D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].

    ADS  Google Scholar 

  83. U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in q T spectra of Drell-Yan and Z-boson production, JHEP 11 (2014) 098 [arXiv:1407.3311] [INSPIRE].

  84. A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].

  85. C. Marcantonini and I.W. Stewart, Reparameterization Invariant Collinear Operators, Phys. Rev. D 79 (2009) 065028 [arXiv:0809.1093] [INSPIRE].

  86. P.V. Landshoff and J.C. Polkinghorne, Calorimeter Triggers for Hard Collisions, Phys. Rev. D 18 (1978) 3344 [INSPIRE].

  87. C. Goebel, F. Halzen and D.M. Scott, Double Drell-Yan Annihilations in Hadron Collisions: Novel Tests of the Constituent Picture, Phys. Rev. D 22 (1980) 2789 [INSPIRE].

  88. F. Takagi, Multiple Production of Quark Jets Off Nuclei, Phys. Rev. Lett. 43 (1979) 1296 [INSPIRE].

    Article  ADS  Google Scholar 

  89. H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].

  90. J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].

  91. L.G. Almeida, S.D. Ellis, C. Lee, G. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].

    Article  ADS  Google Scholar 

  92. D. Bertolini, M.P. Solon and J.R. Walsh, Integrated and Differential Accuracy in Resummed Cross Sections, Phys. Rev. D 95 (2017) 054024 [arXiv:1701.07919] [INSPIRE].

  93. O.V. Tarasov, A.A. Vladimirov and A. Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. 93B (1980) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  94. S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

  95. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

  96. S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

  97. A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

  98. J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The Quark Beam Function at Two Loops, JHEP 04 (2014) 113 [arXiv:1401.5478] [INSPIRE].

    Article  ADS  Google Scholar 

  99. A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].

  100. C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].

  101. M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv:1407.3272] [INSPIRE].

  102. S. Mantry and F. Petriello, Transverse Momentum Distributions from Effective Field Theory with Numerical Results, Phys. Rev. D 83 (2011) 053007 [arXiv:1007.3773] [INSPIRE].

  103. M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [INSPIRE].

  104. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].

  105. M.A. Ebert, J.K.L. Michel and F.J. Tackmann, Resummation Improved Rapidity Spectrum for Gluon Fusion Higgs Production, JHEP 05 (2017) 088 [arXiv:1702.00794] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

    Gillian Lustermans & Wouter J. Waalewijn

  2. Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Gillian Lustermans & Wouter J. Waalewijn

  3. Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607, Hamburg, Germany

    Johannes K. L. Michel & Frank J. Tackmann

Authors
  1. Gillian Lustermans
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Johannes K. L. Michel
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Frank J. Tackmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Wouter J. Waalewijn
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Johannes K. L. Michel.

Additional information

ArXiv ePrint: 1901.03331

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lustermans, G., Michel, J.K.L., Tackmann, F.J. et al. Joint two-dimensional resummation in qT and 0-jettiness at NNLL. J. High Energ. Phys. 2019, 124 (2019). https://doi.org/10.1007/JHEP03(2019)124

Download citation

  • Received: 21 January 2019

  • Accepted: 14 March 2019

  • Published: 21 March 2019

  • DOI: https://doi.org/10.1007/JHEP03(2019)124

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature