D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, JHEP
03 (2018) 189 [arXiv:1704.02330] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
C.-M. Chang et al., Topological defect lines and renormalization group flows in two dimensions, JHEP
01 (2019) 026 [arXiv:1802.04445] [INSPIRE].
ADS
Article
Google Scholar
J.C. Baez and A.D. Lauda, Higher-dimensional algebra V: 2-groups, Theory Appl. Categ.
12 (2004) 423 [math/0307200].
J. Baez and U. Schreiber, Higher gauge theory: 2-connections on 2-bundles, hep-th/0412325 [INSPIRE].
J.C. Baez and U. Schreiber, Higher gauge theory, in Categories in algebra, geometry and mathematical physics, A. Davydov et al. eds., Contemporary Mathematics volume 431, AMS, Providence U.S.A. (2007) [math//0511710].
U. Schreiber and K. Waldorf, Connections on non-Abelian Gerbes and their holonomy, Theory Appl. Categ.
28 (2013) 476 [arXiv:0808.1923].
MathSciNet
MATH
Google Scholar
A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].
S. Gukov and A. Kapustin, Topological quantum field theory, nonlocal operators and gapped phases of gauge theories, arXiv:1307.4793 [INSPIRE].
A. Kapustin and R. Thorngren, Topological field theory on a lattice, discrete theta-angles and confinement, Adv. Theor. Math. Phys.
18 (2014) 1233 [arXiv:1308.2926] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
R. Thorngren and C. von Keyserlingk, Higher SPT’s and a generalization of anomaly in-flow, arXiv:1511.02929 [INSPIRE].
D. Gaiotto and T. Johnson-Freyd, Symmetry protected topological phases and generalized cohomology, arXiv:1712.07950 [INSPIRE].
L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, JHEP
04 (2017) 096 [arXiv:1605.01640] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y. Tachikawa, On gauging finite subgroups, arXiv:1712.09542 [INSPIRE].
C. Delcamp and A. Tiwari, From gauge to higher gauge models of topological phases, JHEP
10 (2018) 049 [arXiv:1802.10104] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, JHEP
02 (2019) 184 [arXiv:1802.04790] [INSPIRE].
Article
Google Scholar
E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys.
63 (2015) 659 [arXiv:1508.04770] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Bauer, G. Girardi, R. Stora and F. Thuillier, A class of topological actions, JHEP
08 (2005) 027 [hep-th/0406221] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].
M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett.
B 149 (1984) 117.
S. Eilenberg and S. Mac Lane, On the groups H(Π, n), I, Ann. Math.
58 (1953) 55.
M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry, defects and gauging of topological phases, arXiv:1410.4540 [INSPIRE].
C.G. Callan Jr. and J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys.
B 250 (1985) 427 [INSPIRE].
G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B
59 (1980) 135.
A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in three dimensions and group cohomology, Phys. Rev. Lett.
112 (2014) 231602 [arXiv:1403.0617] [INSPIRE].
A. Kitaev, On the classification of short-range entangled states, eminar at
Simons Center for
Geometry and Physics
, June 6, Stony Brook, U.S.A. (2013).
A. Kapustin, Symmetry protected topological phases, anomalies and cobordisms: beyond group cohomology, arXiv:1403.1467 [INSPIRE].
D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE].
P. Etingof, D. Nikshych, V. Ostrik and E. Meir, Fusion categories and homotopy theory, Quant. Topol.
1 (2010) 209 [arXiv:0909.3140].
MathSciNet
Article
MATH
Google Scholar
J.C.Y. Teo, T.L. Hughes and E. Fradkin, Theory of twist liquids: gauging an anyonic symmetry, Annals Phys.
360 (2015) 349 [arXiv:1503.06812] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
M. Barkeshli and M. Cheng, Time-reversal and spatial-reflection symmetry localization anomalies in (2 + 1)-dimensional topological phases of matter, Phys. Rev.
B 98 (2018) 115129 [arXiv:1706.09464] [INSPIRE].
G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys.
123 (1989) 177 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G.W. Moore and G. Segal, D-branes and k-theory in 2D topological field theory, hep-th/0609042 [INSPIRE].
Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on abelian higgs models and persistent order, SciPost Phys.
6 (2019) 003 [arXiv:1705.04786] [INSPIRE].
ADS
Article
Google Scholar
A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP
04 (2014) 001 [arXiv:1401.0740] [INSPIRE].
ADS
Article
Google Scholar
G.W. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett.
B 212 (1988) 451 [INSPIRE].
G. Segal, Cohomology of topological groups, in Symposia Mathematica, Volume IV (INDAM, Rome, 1968/69), Academic Press, London U.K. (1970).
J.-L. Brylinski, Differentiable cohomology of gauge groups, math/0011069.
X. Chen, F.J. Burnell, A. Vishwanath and L. Fidkowski, Anomalous Symmetry Fractionalization and Surface Topological Order, Phys. Rev.
X 5 (2015) 041013 [arXiv:1403.6491] [INSPIRE].
J. Gomis, Z. Komargodski, and N. Seiberg, unpublished (2017).
A. Kitaev, Anyons in an exactly solved model and beyond, Annals Phys.
321 (2006) 2 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.H.C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math. Helv.
22 (1949) 48.
MathSciNet
Article
MATH
Google Scholar
A.M. Essin and M. Hermele, Classifying fractionalization: symmetry classification of gapped ℤ2
spin liquids in two dimensions, Phys. Rev.
B 87 (2013) 104406 [arXiv:1212.0593].
N. Tarantino, N.H. Lindner and L. Fidkowski, Symmetry fractionalization and twist defects, New J. Phys.
18 (2016) 035006 [arXiv:1506.06754].
ADS
MathSciNet
Article
Google Scholar
B. Bakalov and A.A. Kirillov, Lectures on tensor categories and modular functors, University Lecture Series volume 21, American Mathematical Society, U.S.A. (2001).
C. Vafa, Toward classification of conformal theories, Phys. Lett.
B 206 (1988) 421 [INSPIRE].
A. Bernevig and T. Neupert, Topological superconductors and category theory, 2015, arXiv:1506.05805 [INSPIRE].
J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP
10 (2001) 005 [hep-th/0108152] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.
D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP
04 (2017) 135 [arXiv:1702.07035] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP
02 (2017) 072 [arXiv:1611.07874] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD
3, JHEP
01 (2018) 109 [arXiv:1706.08755] [INSPIRE].
C. Cordova, P.-S. Hsin and N. Seiberg, Global symmetries, counterterms and duality in Chern-Simons matter theories with orthogonal gauge groups, SciPost Phys.
4 (2018) 021 [arXiv:1711.10008] [INSPIRE].
ADS
Article
Google Scholar
E. Witten, unpublished (2016).
F. Benini, Three-dimensional dualities with bosons and fermions, JHEP
02 (2018) 068 [arXiv:1712.00020] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Córdova, P.-S. Hsin and N. Seiberg, Time-reversal symmetry, anomalies and dualities in (2 + 1)d, SciPost Phys.
5 (2018) 006 [arXiv:1712.08639] [INSPIRE].
N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP
2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
P.S. Hsin, unpublished (2017).
C. Wang and M. Levin, Anomaly indicators for time-reversal symmetric topological orders, Phys. Rev. Lett.
119 (2017) 136801 [arXiv:1610.04624] [INSPIRE].
ADS
Article
Google Scholar
M. Barkeshli et al., Reflection and time reversal symmetry enriched topological phases of matter: path integrals, non-orientable manifolds and anomalies, arXiv:1612.07792 [INSPIRE].
A. Vishwanath and T. Senthil, Physics of three dimensional bosonic topological insulators: surface deconfined criticality and quantized magnetoelectric effect, Phys. Rev.
X 3 (2013) 011016 [arXiv:1209.3058] [INSPIRE].
R. Thorngren, Framed Wilson operators, fermionic strings and gravitational anomaly in 4d, JHEP
02 (2015) 152 [arXiv:1404.4385] [INSPIRE].
J. Milnor, Construction of universal bundles, II, Ann. Math
63 (1965) 430.
MathSciNet
Article
MATH
Google Scholar
A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge U.K. (2002).
N.E. Steenrod, Products of cocycles and Extensions of Mappings, Ann. Math
48 (1947) 290.
MathSciNet
Article
MATH
Google Scholar
S. Eilenberg and S. Mac Lane, On the groups H(Π, n), II: methods of computation, Ann. Math.
60 (1954) 49.
J.H.C. Whitehead, A certain exact sequence, Ann. Math.
52 (1950) 51.
MathSciNet
Article
MATH
Google Scholar
C. Closset et al., Contact terms, unitarity and f-maximization in three-dimensional superconformal theories, JHEP
10 (2012) 053 [arXiv:1205.4142] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar