N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP
09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, J.J. Carrasco, W.-M. Chen, H. Johansson and R. Roiban, Gravity Amplitudes as Generalized Double Copies of Gauge-Theory Amplitudes, Phys. Rev. Lett.
118 (2017) 181602 [arXiv:1701.02519] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, J.J.M. Carrasco, W.-M. Chen, H. Johansson, R. Roiban and M. Zeng, Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev.
D 96 (2017) 126012 [arXiv:1708.06807] [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP
06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity Structure of Maximally Supersymmetric Scattering Amplitudes, Phys. Rev. Lett.
113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].
ADS
Article
Google Scholar
S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys.
B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point Amplitudes in N = 8 Supergravity and Wilson Loops, Nucl. Phys.
B 807 (2009) 290 [arXiv:0805.2763] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Boucher-Veronneau and L.J. Dixon, N ≥ 4 Supergravity Amplitudes from Gauge Theory at Two Loops, JHEP
12 (2011) 046 [arXiv:1110.1132] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett.
B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP
12 (2016) 030 [arXiv:1608.01902] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, M. Enciso, H. Ita and M. Zeng, Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector, Phys. Rev.
D 96 (2017) 096017 [arXiv:1709.06055] [INSPIRE].
ADS
MathSciNet
Google Scholar
D.A. Kosower, Direct Solution of Integration-by-Parts Systems, Phys. Rev.
D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Maierhöfer and J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [INSPIRE].
J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP
09 (2018) 024 [arXiv:1805.01873] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.
B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.
116 (2016) 062001 [Erratum ibid.
116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP
04 (2016) 078 [arXiv:1511.09404] [INSPIRE].
ADS
Google Scholar
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP
10 (2018) 103 [arXiv:1807.09812] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP
01 (2019) 006 [arXiv:1807.11522] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, JHEP
03 (2019) 042 [arXiv:1809.06240] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in
\( \mathcal{N} \) = 4 super-Yang-Mills theory, arXiv:1812.08941 [INSPIRE].
D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master integrals for three-jet production at NNLO, arXiv:1812.11160 [INSPIRE].
D. Chicherin, J.M. Henn, P. Wasser, T. Gehrmann, Y. Zhang and S. Zoia, Analytic result for a two-loop five-particle amplitude, arXiv:1812.11057 [INSPIRE].
D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP
05 (2018) 164 [arXiv:1712.09610] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.
120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP
11 (2018) 116 [arXiv:1809.09067] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, Phys. Rev.
D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP
01 (2019) 186 [arXiv:1811.11699] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett.
122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].
ADS
Article
Google Scholar
S. Weinberg, Infrared photons and gravitons, Phys. Rev.
140 (1965) B516 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Van Nieuwenhuizen, Radiation of massive gravitation, Phys. Rev.
D 7 (1973) 2300 [INSPIRE].
ADS
Google Scholar
R. Akhoury, R. Saotome and G. Sterman, Collinear and Soft Divergences in Perturbative Quantum Gravity, Phys. Rev.
D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].
ADS
Google Scholar
M. Beneke and G. Kirilin, Soft-collinear gravity, JHEP
09 (2012) 066 [arXiv:1207.4926] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.C. Dunbar and P.S. Norridge, Infinities within graviton scattering amplitudes, Class. Quant. Grav.
14 (1997) 351 [hep-th/9512084] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP
05 (2011) 087 [arXiv:1101.1524] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP
05 (2011) 060 [arXiv:1103.2981] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.
117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].
ADS
Article
Google Scholar
F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
Z. Bern, S. Davies and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons, Phys. Rev.
D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].
ADS
Google Scholar
Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and Gravitons from Gauge Invariance, Phys. Rev.
D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].
ADS
Google Scholar
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.
105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP
10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys.
B 269 (1986) 1 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F.A. Berends, W.T. Giele and H. Kuijf, On relations between multi-gluon and multigraviton scattering, Phys. Lett.
B 211 (1988) 91 [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys.
B 546 (1999) 423 [hep-th/9811140] [INSPIRE].
ADS
Article
MATH
Google Scholar
K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys.
B 192 (1981) 159 [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016) [INSPIRE].
E. Herrmann and J. Trnka, UV cancellations in gravity loop integrands, JHEP
02 (2019) 084 [arXiv:1808.10446] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.L. Bourjaily, E. Herrmann and J. Trnka, Amplitudes at Infinity, Phys. Rev.
D 99 (2019) 066006 [arXiv:1812.11185] [INSPIRE].
ADS
Google Scholar
J.J. Carrasco and H. Johansson, Five-Point Amplitudes in N = 4 Super-Yang-Mills Theory and N = 8 Supergravity, Phys. Rev.
D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].
ADS
Google Scholar
Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.
D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
ADS
MathSciNet
Google Scholar
T. Gehrmann and E. Remiddi, Two loop master integrals for γ
* → 3 jets: The Planar topologies, Nucl. Phys.
B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
T. Gehrmann and E. Remiddi, Two loop master integrals for γ
* → 3 jets: The Nonplanar topologies, Nucl. Phys.
B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].
D. Chicherin, J.M. Henn and E. Sokatchev, Scattering Amplitudes from Superconformal Ward Identities, Phys. Rev. Lett.
121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].
ADS
Article
Google Scholar
D. Chicherin, J.M. Henn and E. Sokatchev, Implications of nonplanar dual conformal symmetry, JHEP
09 (2018) 012 [arXiv:1807.06321] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP
10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
V. Mitev and Y. Zhang, SymBuild: a package for the computation of integrable symbols in scattering amplitudes, arXiv:1809.05101 [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on Soft Theorems: Trees, Loops and Strings, Phys. Rev.
D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].
ADS
MathSciNet
Google Scholar
Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, One loop n point helicity amplitudes in (selfdual) gravity, Phys. Lett.
B 444 (1998) 273 [hep-th/9809160] [INSPIRE].
ADS
Article
Google Scholar
S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP
12 (2011) 066 [arXiv:1105.5606] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP
44 (1976) 443 [INSPIRE].
ADS
Google Scholar
V. Del Duca, An introduction to the perturbative QCD Pomeron and to jet physics at large rapidities, hep-ph/9503226 [INSPIRE].
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.
A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun.
144 (2002) 200 [hep-ph/0111255] [INSPIRE].
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.
94 (2005) 181602 [hep-th/0501052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A Recursion relation for gravity amplitudes, Nucl. Phys.
B 721 (2005) 98 [hep-th/0502146] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP
01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
ADS
Article
Google Scholar
J. Bartels, L.N. Lipatov and A. Sabio Vera, Double-logarithms in Einstein-Hilbert gravity and supergravity, JHEP
07 (2014) 056 [arXiv:1208.3423] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in
\( \mathcal{N} \) = 8 supergravity, arXiv:1901.08563 [INSPIRE].