Towards a full solution of the large N double-scaled SYK model

Abstract

We compute the exact, all energy scale, 4-point function of the large N doublescaled SYK model, by using only combinatorial tools and relating the correlation functions to sums over chord diagrams. We apply the result to obtain corrections to the maximal Lyapunov exponent at low temperatures. We present the rules for the non-perturbative diagrammatic description of correlation functions of the entire model. The latter indicate that the model can be solved by a reduction of a quantum deformation of SL(2), that generalizes the Schwarzian to the complete range of energies.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  2. [2]

    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Kitaev, A simple model of quantum holography, [http://online.kitp.ucsb.edu/online/entangled15/kitaev/] [http://online.kitp.ucsb.edu/online/entangled15/kitaev2/].

  4. [4]

    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. [6]

    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. [7]

    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  9. [9]

    O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59 (1999) 5341.

    ADS  Article  Google Scholar 

  10. [10]

    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Comments on the Random Thirring Model, JHEP 09 (2017) 057 [arXiv:1702.05105] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    V. Narovlansky and O. Aharony, Renormalization Group in Field Theories with Quantum Quenched Disorder, Phys. Rev. Lett. 121 (2018) 071601 [arXiv:1803.08529] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    O. Aharony and V. Narovlansky, Renormalization group flow in field theories with quenched disorder, Phys. Rev. D 98 (2018) 045012 [arXiv:1803.08534] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].

  18. [18]

    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. [19]

    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

  20. [20]

    H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of Random Matrix Behavior in Scrambling Systems, JHEP 07 (2018) 124 [Erratum ibid. 02 (2019) 197] [arXiv:1803.08050] [INSPIRE].

  21. [21]

    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP 12 (2017) 148 [arXiv:1710.08113] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

  24. [24]

    A.M. García-García and J.J.M. Verbaarschot, Analytical Spectral Density of the Sachdev-Ye-Kitaev Model at finite N, Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].

  25. [25]

    A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Exact moments of the Sachdev-Ye-Kitaev model up to order 1/N 2, JHEP 04 (2018) 146 [arXiv:1801.02696] [INSPIRE].

  26. [26]

    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. [27]

    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian Quantum Mechanics, JHEP 11 (2018) 182 [arXiv:1804.09834] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. [30]

    L. Erdős and D. Schröder, Phase Transition in the Density of States of Quantum Spin Glasses, Math. Phys. Anal. Geom. 17 (2014) 441 [arXiv:1407.1552] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    M. Berkooz, P. Narayan and J. Simon, Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction, JHEP 08 (2018) 192 [arXiv:1806.04380] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    P. Szablowski, Multidimensional q-normal and related distributionsMarkov case, Electron. J. Probab. 15 (2010) 1296.

    MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    M. Arik and D.D. Coon, Hilbert Spaces of Analytic Functions and Generalized Coherent States, J. Math. Phys. 17 (1976) 524 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    P.P. Kulish, Quantum groups, q oscillators and covariant algebras, Theor. Math. Phys. 94 (1993) 137 [hep-th/9209060] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    G. Gasper and M. Rahman, Basic hypergeometric series, vol. 96, Cambridge University Press (2004).

  36. [36]

    T.G. Mertens, The Schwarzian theoryorigins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian TheoryA Wilson Line Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. [38]

    T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].

  39. [39]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    S. Jackson, L. McGough and H. Verlinde, Conformal Bootstrap, Universality and Gravitational Scattering, Nucl. Phys. B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    S.L. Woronowicz, Unbounded elements affiliated with C * -algebras and noncompact quantum groups, Commun. Math. Phys. 136 (1991) 399.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    L.I. Korogodsky, Quantum group SU(1, 1) ⋊ ℤ2 andsuper-tensorproducts, Commun. Math. Phys. 163 (1994) 433.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    J. Kustermans and S. Vaes, A simple definition for locally compact quantum groups, Compt. Rend. Acad. Sci. Ser. I Math. 328 (1999) 871.

    MathSciNet  MATH  Google Scholar 

  45. [45]

    J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm. Supér. 33 (2000) 837.

    MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    E. Koelink, J.V. Stokman and M. Rahman, Fourier Transforms on the Quantum SU(1, 1) Group, Publ. Res. Inst. Math. Sci. 37 (2001) 621.

    MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    M. Caspers, Spherical Fourier transforms on locally compact quantum Gelfand pairs, SIGMA 7 (2011) 087 [arXiv:1104.2459].

    MathSciNet  MATH  Google Scholar 

  48. [48]

    T. Koornwinder, Askey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group, SIAM J. Math. Anal. 24 (1993) 795.

    MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    W.G.M. Groenevelt, Bilinear summation formulas from quantum algebra representations, math/0201272.

  50. [50]

    W. Groenevelt, E. Koelink and J. Kustermans, The Dual Quantum Group for the Quantum Group Analogue of the Normalizer of SU(1, 1) in SL(2, ℂ), Int. Math. Res. Not. 2010 (2010) 1167.

    MATH  Google Scholar 

  51. [51]

    M. Caspers and E. Koelink, Quantum groups and special functions: Bizerte Lectures, (2010) [https://www.math.ru.nl/~koelink/edu/GQSF-Bizerte-2010.pdf].

  52. [52]

    P. Desmedt, Aspects of the theory of locally compact quantum groups: Amenability-Plancherel measure, Ph.D. Thesis, Katholieke Universiteit Leuven (2003).

  53. [53]

    M. Caspers, Non-commutative integration on locally compact quantum groups, Ph.D. Thesis, Radboud Universiteit Nijmegen (2012).

  54. [54]

    P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, math/9901053.

  55. [55]

    W. Groenevelt, Wilson function transforms related to Racah coefficients, Acta Appl. Math. 91 (2006) 133.

    MathSciNet  Article  MATH  Google Scholar 

  56. [56]

    Y. Jia and J.J.M. Verbaarschot, Large N expansion of the moments and free energy of Sachdev-Ye-Kitaev model and the enumeration of intersection graphs, JHEP 11 (2018) 031 [arXiv:1806.03271] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  57. [57]

    G. Tarnopolsky, Large q expansion in the Sachdev-Ye-Kitaev model, Phys. Rev. D 99 (2019) 026010 [arXiv:1801.06871] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12 (2006) 004 [hep-th/0609062] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer-Verlag Berlin Heidelberg (2010).

    Google Scholar 

  60. [60]

    T.H. Koornwinder, The Askey scheme as a four-manifold with corners, Ramanujan J. 20 (2009) 409.

    MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    M.E. Ismail, D. Stanton and G. Viennot, The combinatorics of q-Hermite polynomials and the Askey-Wilson integral, Eur. J. Combinatorics 8 (1987) 379.

    MathSciNet  Article  MATH  Google Scholar 

  62. [62]

    P.J. Szablowski, On the q-Hermite polynomials and their relationship with some other families of orthogonal polynomials, Demonstratio Math. 46 (2017) 679 [arXiv:1101.2875].

    MathSciNet  MATH  Google Scholar 

  63. [63]

    R.A. Askey, M. Rahman and S.K. Suslov, On a general q-Fourier transformation with nonsymmetric kernels, J. Comput. Appl. Math. 68 (1996) 25.

    MathSciNet  Article  MATH  Google Scholar 

  64. [64]

    G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press (1922).

  65. [65]

    D.S. Moak, The q-analogue of Stirlings formula, Rocky Mt. J. Math. 14 (1984) 403.

    MathSciNet  Article  MATH  Google Scholar 

  66. [66]

    C. Kassel, Quantum groups, vol. 155, Springer-Verlag New York (1995).

  67. [67]

    T. Timmermann, An Invitation to Quantum Groups and Duality, European Mathematical Society (2008).

  68. [68]

    L.L. Vaksman and L.I. Korogodskii, Spherical functions on the quantum group SU(1, 1) and the q-analogue of the Mehler-Fock formula, Funct. Anal. Appl. 25 (1991) 48.

    MathSciNet  Article  MATH  Google Scholar 

  69. [69]

    T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, Y. Saburi and K. Ueno, Unitary representations of the quantum group SUq(1, 1): Structure of the dual space of \( \mathcal{U} \) q(sl(2)), Lett. Math. Phys. 19 (1990) 187.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  70. [70]

    T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, Y. Saburi and K. Ueno, Unitary representations of the quantum group SUq(1, 1): IIMatrix elements of unitary representations and the basic hypergeometric functions, Lett. Math. Phys. 19 (1990) 195.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. [71]

    E. Koelink and J. Kustermans, A Locally Compact Quantum Group Analogue of the Normalizer of SU(1, 1) in SL(2, ℂ), Commun. Math. Phys. 233 (2003) 231.

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir Narovlansky.

Additional information

ArXiv ePrint: 1811.02584

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berkooz, M., Isachenkov, M., Narovlansky, V. et al. Towards a full solution of the large N double-scaled SYK model. J. High Energ. Phys. 2019, 79 (2019). https://doi.org/10.1007/JHEP03(2019)079

Download citation

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • Matrix Models
  • Quantum Groups
  • Random Systems