Towards a full solution of the large N double-scaled SYK model

  • Micha Berkooz
  • Mikhail Isachenkov
  • Vladimir NarovlanskyEmail author
  • Genis Torrents
Open Access
Regular Article - Theoretical Physics


We compute the exact, all energy scale, 4-point function of the large N doublescaled SYK model, by using only combinatorial tools and relating the correlation functions to sums over chord diagrams. We apply the result to obtain corrections to the maximal Lyapunov exponent at low temperatures. We present the rules for the non-perturbative diagrammatic description of correlation functions of the entire model. The latter indicate that the model can be solved by a reduction of a quantum deformation of SL(2), that generalizes the Schwarzian to the complete range of energies.


Holography and condensed matter physics (AdS/CMT) Matrix Models Quantum Groups Random Systems 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
  4. [4]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  9. [9]
    O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59 (1999) 5341.ADSCrossRefGoogle Scholar
  10. [10]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Comments on the Random Thirring Model, JHEP 09 (2017) 057 [arXiv:1702.05105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    V. Narovlansky and O. Aharony, Renormalization Group in Field Theories with Quantum Quenched Disorder, Phys. Rev. Lett. 121 (2018) 071601 [arXiv:1803.08529] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    O. Aharony and V. Narovlansky, Renormalization group flow in field theories with quenched disorder, Phys. Rev. D 98 (2018) 045012 [arXiv:1803.08534] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  18. [18]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  20. [20]
    H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of Random Matrix Behavior in Scrambling Systems, JHEP 07 (2018) 124 [Erratum ibid. 02 (2019) 197] [arXiv:1803.08050] [INSPIRE].
  21. [21]
    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP 12 (2017) 148 [arXiv:1710.08113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  24. [24]
    A.M. García-García and J.J.M. Verbaarschot, Analytical Spectral Density of the Sachdev-Ye-Kitaev Model at finite N, Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].
  25. [25]
    A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Exact moments of the Sachdev-Ye-Kitaev model up to order 1/N 2, JHEP 04 (2018) 146 [arXiv:1801.02696] [INSPIRE].
  26. [26]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian Quantum Mechanics, JHEP 11 (2018) 182 [arXiv:1804.09834] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    L. Erdős and D. Schröder, Phase Transition in the Density of States of Quantum Spin Glasses, Math. Phys. Anal. Geom. 17 (2014) 441 [arXiv:1407.1552] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Berkooz, P. Narayan and J. Simon, Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction, JHEP 08 (2018) 192 [arXiv:1806.04380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Szablowski, Multidimensional q-normal and related distributionsMarkov case, Electron. J. Probab. 15 (2010) 1296.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Arik and D.D. Coon, Hilbert Spaces of Analytic Functions and Generalized Coherent States, J. Math. Phys. 17 (1976) 524 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    P.P. Kulish, Quantum groups, q oscillators and covariant algebras, Theor. Math. Phys. 94 (1993) 137 [hep-th/9209060] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Gasper and M. Rahman, Basic hypergeometric series, vol. 96, Cambridge University Press (2004).Google Scholar
  36. [36]
    T.G. Mertens, The Schwarzian theoryorigins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian TheoryA Wilson Line Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].
  39. [39]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S. Jackson, L. McGough and H. Verlinde, Conformal Bootstrap, Universality and Gravitational Scattering, Nucl. Phys. B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S.L. Woronowicz, Unbounded elements affiliated with C * -algebras and noncompact quantum groups, Commun. Math. Phys. 136 (1991) 399.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    L.I. Korogodsky, Quantum group SU(1, 1) ⋊ ℤ2 andsuper-tensorproducts, Commun. Math. Phys. 163 (1994) 433.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    J. Kustermans and S. Vaes, A simple definition for locally compact quantum groups, Compt. Rend. Acad. Sci. Ser. I Math. 328 (1999) 871.MathSciNetzbMATHGoogle Scholar
  45. [45]
    J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm. Supér. 33 (2000) 837.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    E. Koelink, J.V. Stokman and M. Rahman, Fourier Transforms on the Quantum SU(1, 1) Group, Publ. Res. Inst. Math. Sci. 37 (2001) 621.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Caspers, Spherical Fourier transforms on locally compact quantum Gelfand pairs, SIGMA 7 (2011) 087 [arXiv:1104.2459].MathSciNetzbMATHGoogle Scholar
  48. [48]
    T. Koornwinder, Askey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group, SIAM J. Math. Anal. 24 (1993) 795.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    W.G.M. Groenevelt, Bilinear summation formulas from quantum algebra representations, math/0201272.
  50. [50]
    W. Groenevelt, E. Koelink and J. Kustermans, The Dual Quantum Group for the Quantum Group Analogue of the Normalizer of SU(1, 1) in SL(2, ℂ), Int. Math. Res. Not. 2010 (2010) 1167.zbMATHGoogle Scholar
  51. [51]
    M. Caspers and E. Koelink, Quantum groups and special functions: Bizerte Lectures, (2010) [].
  52. [52]
    P. Desmedt, Aspects of the theory of locally compact quantum groups: Amenability-Plancherel measure, Ph.D. Thesis, Katholieke Universiteit Leuven (2003).Google Scholar
  53. [53]
    M. Caspers, Non-commutative integration on locally compact quantum groups, Ph.D. Thesis, Radboud Universiteit Nijmegen (2012).Google Scholar
  54. [54]
    P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, math/9901053.
  55. [55]
    W. Groenevelt, Wilson function transforms related to Racah coefficients, Acta Appl. Math. 91 (2006) 133.MathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    Y. Jia and J.J.M. Verbaarschot, Large N expansion of the moments and free energy of Sachdev-Ye-Kitaev model and the enumeration of intersection graphs, JHEP 11 (2018) 031 [arXiv:1806.03271] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    G. Tarnopolsky, Large q expansion in the Sachdev-Ye-Kitaev model, Phys. Rev. D 99 (2019) 026010 [arXiv:1801.06871] [INSPIRE].ADSGoogle Scholar
  58. [58]
    T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12 (2006) 004 [hep-th/0609062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer-Verlag Berlin Heidelberg (2010).CrossRefzbMATHGoogle Scholar
  60. [60]
    T.H. Koornwinder, The Askey scheme as a four-manifold with corners, Ramanujan J. 20 (2009) 409.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    M.E. Ismail, D. Stanton and G. Viennot, The combinatorics of q-Hermite polynomials and the Askey-Wilson integral, Eur. J. Combinatorics 8 (1987) 379.MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    P.J. Szablowski, On the q-Hermite polynomials and their relationship with some other families of orthogonal polynomials, Demonstratio Math. 46 (2017) 679 [arXiv:1101.2875].MathSciNetzbMATHGoogle Scholar
  63. [63]
    R.A. Askey, M. Rahman and S.K. Suslov, On a general q-Fourier transformation with nonsymmetric kernels, J. Comput. Appl. Math. 68 (1996) 25.MathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press (1922).Google Scholar
  65. [65]
    D.S. Moak, The q-analogue of Stirlings formula, Rocky Mt. J. Math. 14 (1984) 403.MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    C. Kassel, Quantum groups, vol. 155, Springer-Verlag New York (1995).Google Scholar
  67. [67]
    T. Timmermann, An Invitation to Quantum Groups and Duality, European Mathematical Society (2008).Google Scholar
  68. [68]
    L.L. Vaksman and L.I. Korogodskii, Spherical functions on the quantum group SU(1, 1) and the q-analogue of the Mehler-Fock formula, Funct. Anal. Appl. 25 (1991) 48.MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, Y. Saburi and K. Ueno, Unitary representations of the quantum group SUq(1, 1): Structure of the dual space of \( \mathcal{U} \) q(sl(2)), Lett. Math. Phys. 19 (1990) 187.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, Y. Saburi and K. Ueno, Unitary representations of the quantum group SUq(1, 1): IIMatrix elements of unitary representations and the basic hypergeometric functions, Lett. Math. Phys. 19 (1990) 195.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    E. Koelink and J. Kustermans, A Locally Compact Quantum Group Analogue of the Normalizer of SU(1, 1) in SL(2, ℂ), Commun. Math. Phys. 233 (2003) 231.ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Micha Berkooz
    • 1
  • Mikhail Isachenkov
    • 1
    • 2
  • Vladimir Narovlansky
    • 1
    Email author
  • Genis Torrents
    • 1
  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance

Personalised recommendations