Skip to main content

Advertisement

SpringerLink
Bounds on slow roll at the boundary of the landscape
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 March 2019

Bounds on slow roll at the boundary of the landscape

  • Sumit K. Garg1,
  • Chethan Krishnan2 &
  • M. Zaid Zaz3 

Journal of High Energy Physics volume 2019, Article number: 29 (2019) Cite this article

  • 300 Accesses

  • 43 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present strong evidence that the tree level slow roll bounds of arXiv:1807.05193 and arXiv:1810.05506 are valid, even when the tachyon has overlap with the volume of the cycle wrapped by the orientifold. This extends our previous results in the volume-dilaton subspace to a semi-universal modulus. Emboldened by this and other observations, we investigate what it means to have a bound on (generalized) slow roll in a multi-field landscape. We argue that for any point ϕ0 in an N-dimensional field space with V (ϕ0) > 0, there exists a path of monotonically decreasing potential energy to a point ϕ1 within a path length ≲ \( \mathcal{O} \)(1), such that \( \sqrt{N} \ln \frac{V\left({\phi}_1\right)}{V\left({\phi}_0\right)}\lesssim -\mathcal{O}(1) \). The previous de Sitter swampland bounds are specific ways to realize this stringent non-local constraint on field space, but we show that it also incorporates (for example) the scenario where both slow roll parameters are intermediate-valued and the Universe undergoes a small number of e-folds, as in the Type IIA set up of arXiv:1310.8300. Our observations are in the context of tree level constructions, so we take the conservative viewpoint that it is a characterization of the classical “boundary” of the string landscape. To emphasize this, we argue that these bounds can be viewed as a type of Dine-Seiberg statement.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].

  4. S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  7. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].

  9. D. Cohen-Maldonado, J. Diaz, T. van Riet and B. Vercnocke, Observations on fluxes near anti-branes, JHEP 01 (2016) 126 [arXiv:1507.01022] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. I. Bena, J. Blåbäck and D. Turton, Loop corrections to the antibrane potential, JHEP 07 (2016) 132 [arXiv:1602.05959] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Bertolini, D. Musso, I. Papadimitriou and H. Raj, A goldstino at the bottom of the cascade, JHEP 11 (2015) 184 [arXiv:1509.03594] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. Krishnan, H. Raj and P.N. Bala Subramanian, On the KKLT Goldstino, JHEP 06 (2018) 092 [arXiv:1803.04905] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Ashoorioon, H. Firouzjahi and M.M. Sheikh-Jabbari, M-flation: Inflation From Matrix Valued Scalar Fields, JCAP 06 (2009) 018 [arXiv:0903.1481] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M.A.C. Torres, Meta-Stable Supersymmetry Breaking in a Cooling Universe, JHEP 03 (2007) 107 [hep-th/0611018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Junghans and M. Zagermann, A Universal Tachyon in Nearly No-scale de Sitter Compactifications, JHEP 07 (2018) 078 [arXiv:1612.06847] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, Fortsch. Phys. 67 (2019) 1800092 [arXiv:1806.10877] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. G. Dvali, C. Gomez and S. Zell, Quantum Break-Time of de Sitter, JCAP 06 (2017) 028 [arXiv:1701.08776] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar and O. Mena, Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) ≥ −1 are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [INSPIRE].

    ADS  Google Scholar 

  23. J.-L. Lehners, Small-Field and Scale-Free: Inflation and Ekpyrosis at their Extremes, JCAP 11 (2018) 001 [arXiv:1807.05240] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Ó. Colgáin, M.H. P.M. Van Putten and H. Yavartanoo, Observational consequences of H 0 tension in de Sitter Swampland, arXiv:1807.07451 [INSPIRE].

  25. C. Roupec and T. Wrase, de Sitter extrema and the swampland, Fortsch. Phys. 2018 (2018) 1800082 [arXiv:1807.09538] [INSPIRE].

  26. H. Matsui and F. Takahashi, Eternal Inflation and Swampland Conjectures, Phys. Rev. D 99 (2019) 023533 [arXiv:1807.11938] [INSPIRE].

    ADS  Google Scholar 

  27. I. Ben-Dayan, Draining the Swampland, arXiv:1808.01615 [INSPIRE].

  28. C. Damian and O. Loaiza-Brito, Two-field axion inflation and the swampland constraint in the flux-scaling scenario, Fortsch. Phys. 67 (2019) 1800072 [arXiv:1808.03397] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  29. W.H. Kinney, S. Vagnozzi and L. Visinelli, The Zoo Plot Meets the Swampland: Mutual (In)Consistency of Single-Field Inflation, String Conjectures and Cosmological Data, arXiv:1808.06424 [INSPIRE].

  30. K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum Corrections and the de Sitter Swampland Conjecture, JHEP 01 (2019) 145 [arXiv:1808.07498] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. S. Brahma and M. Wali Hossain, Avoiding the string swampland in single-field inflation: Excited initial states, arXiv:1809.01277 [INSPIRE].

  32. K. Choi, D. Chway and C.S. Shin, The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking, JHEP 11 (2018) 142 [arXiv:1809.01475] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. S. Das, A note on Single-field Inflation and the Swampland Criteria, arXiv:1809.03962 [INSPIRE].

  34. C. Han, S. Pi and M. Sasaki, Quintessence Saves Higgs Instability, arXiv:1809.05507 [INSPIRE].

  35. L. Visinelli and S. Vagnozzi, A cosmological window onto the string axiverse and the supersymmetry breaking scale, arXiv:1809.06382 [INSPIRE].

  36. J. Moritz, A. Retolaza and A. Westphal, On uplifts by warped anti-D3-branes, Fortsch. Phys. 67 (2019) 1800098 [arXiv:1809.06618] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  37. H. Matsui, F. Takahashi and M. Yamada, Isocurvature Perturbations of Dark Energy and Dark Matter from the Swampland Conjecture, Phys. Lett. B 789 (2019) 387 [arXiv:1809.07286] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Dimopoulos, Steep Eternal Inflation and the Swampland, Phys. Rev. D 98 (2018) 123516 [arXiv:1810.03438] [INSPIRE].

    ADS  Google Scholar 

  39. L. Anguelova, E.M. Babalic and C.I. Lazaroiu, Two-field Cosmological α-attractors with Noether Symmetry, arXiv:1809.10563 [INSPIRE].

  40. C.-M. Lin, K.-W. Ng and K. Cheung, Chaotic inflation on the brane and the Swampland Criteria, arXiv:1810.01644 [INSPIRE].

  41. K. Hamaguchi, M. Ibe and T. Moroi, The swampland conjecture and the Higgs expectation value, JHEP 12 (2018) 023 [arXiv:1810.02095] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Motaharfar, V. Kamali and R.O. Ramos, Warm way out of the Swampland, arXiv:1810.02816 [INSPIRE].

  43. S. Das, Warm Inflation in the light of Swampland Criteria, arXiv:1810.05038 [INSPIRE].

  44. S.-J. Wang, Electroweak relaxation of cosmological hierarchy, Phys. Rev. D 99 (2019) 023529 [arXiv:1810.06445] [INSPIRE].

    ADS  Google Scholar 

  45. H. Fukuda, R. Saito, S. Shirai and M. Yamazaki, Phenomenological Consequences of the Refined Swampland Conjecture, arXiv:1810.06532 [INSPIRE].

  46. A. Hebecker and T. Wrase, The asymptotic dS Swampland Conjecture — a simplified derivation and a potential loophole, Fortsch. Phys. 2018 (2018) 1800097 [arXiv:1810.08182] [INSPIRE].

    MathSciNet  Google Scholar 

  47. A. Kehagias and A. Riotto, A note on Inflation and the Swampland, Fortsch. Phys. 66 (2018) 1800052 [arXiv:1807.05445] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  48. D. Andriot, New constraints on classical de Sitter: flirting with the swampland, Fortsch. Phys. 67 (2019) 1800103 [arXiv:1807.09698] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  49. L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, Phys. Rev. D 98 (2018) 123502 [arXiv:1808.02877] [INSPIRE].

    ADS  Google Scholar 

  50. L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Hetz and G.A. Palma, Sound Speed of Primordial Fluctuations in Supergravity Inflation, Phys. Rev. Lett. 117 (2016) 101301 [arXiv:1601.05457] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Ashoorioon and M.M. Sheikh-Jabbari, Gauged M-flation, its UV sensitivity and Spectator Species, JCAP 06 (2011) 014 [arXiv:1101.0048] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Ashoorioon and A. Krause, Power Spectrum and Signatures for Cascade Inflation, hep-th/0607001 [INSPIRE].

  54. K. Dasgupta, R. Gwyn, E. McDonough, M. Mia and R. Tatar, de Sitter Vacua in Type IIB String Theory: Classical Solutions and Quantum Corrections, JHEP 07 (2014) 054 [arXiv:1402.5112] [INSPIRE].

  55. X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. D. Junghans, Tachyons in Classical de Sitter Vacua, JHEP 06 (2016) 132 [arXiv:1603.08939] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. D. Andriot and J. Blåbäck, Refining the boundaries of the classical de Sitter landscape, JHEP 03 (2017) 102 [Erratum ibid. 1803 (2018) 083] [arXiv:1609.00385] [INSPIRE].

  58. D. Andriot, On classical de Sitter and Minkowski solutions with intersecting branes, JHEP 03 (2018) 054 [arXiv:1710.08886] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

    ADS  Google Scholar 

  61. B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, Supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  62. U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on String Cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter Space in String Theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. N. Goheer, M. Kleban and L. Susskind, The Trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].

  67. S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].

  68. E. Farhi and A.H. Guth, An Obstacle to Creating a Universe in the Laboratory, Phys. Lett. B 183 (1987) 149 [INSPIRE].

    Article  ADS  Google Scholar 

  69. C. Quigley, Gaugino Condensation and the Cosmological Constant, JHEP 06 (2015) 104 [arXiv:1504.00652] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. M. Dine and N. Seiberg, Is the Superstring Weakly Coupled?, Phys. Lett. 162B (1985) 299 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. J. Polchinski, Brane/antibrane dynamics and KKLT stability, arXiv:1509.05710 [INSPIRE].

  72. P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].

    Article  ADS  Google Scholar 

  73. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in String Theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

  79. G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. J. Blåbäck, U. Danielsson and G. Dibitetto, Accelerated Universes from type IIA Compactifications, JCAP 03 (2014) 003 [arXiv:1310.8300] [INSPIRE].

    Article  ADS  Google Scholar 

  83. R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 2018 (2018) 1800071 [arXiv:1808.09427] [INSPIRE].

    Google Scholar 

  84. S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J. Evslin, C. Krishnan and S. Kuperstein, Cascading quivers from decaying D-branes, JHEP 08 (2007) 020 [arXiv:0704.3484] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. U.H. Danielsson, F.F. Gautason and T. Van Riet, Unstoppable brane-flux decay of \( \overline{\mathrm{D}6} \) branes, JHEP 03 (2017) 141 [arXiv:1609.06529] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. A. Achúcarro and G.A. Palma, The string swampland constraints require multi-field inflation, JCAP 02 (2019) 041 [arXiv:1807.04390] [INSPIRE].

    Article  ADS  Google Scholar 

  88. H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. J. Blåbäck, U. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape, arXiv:1810.11365 [INSPIRE].

  90. D. Marsh, L. McAllister and T. Wrase, The Wasteland of Random Supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. X. Chen, G. Shiu, Y. Sumitomo and S.H.H. Tye, A Global View on The Search for de-Sitter Vacua in (type IIA) String Theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. A.R. Liddle, P. Parsons and J.D. Barrow, Formalizing the slow roll approximation in inflation, Phys. Rev. D 50 (1994) 7222 [astro-ph/9408015] [INSPIRE].

  93. S.K. Garg, C. Krishnan and M. Zaid, work in progress.

  94. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. G. Dibitetto, Gauged Supergravities and the Physics of Extra Dimensions, Ph.D. thesis, Groningen U., 2012. arXiv:1210.2301 [INSPIRE].

  96. F. Denef, A. Hebecker and T. Wrase, de Sitter swampland conjecture and the Higgs potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].

  97. J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].

    Article  ADS  Google Scholar 

  98. H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, JHEP 12 (2018) 032 [arXiv:1809.00478] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. F. Denef, Les Houches Lectures on Constructing String Vacua, Les Houches 87 (2008) 483 [arXiv:0803.1194] [INSPIRE].

    Article  Google Scholar 

  100. H. Liu, G.W. Moore and N. Seiberg, The Challenging cosmic singularity, in Challenges to the Standard Paradigm: Fundamental Physics and Cosmology Irvine, California, November 1-3, 2002, 2002, gr-qc/0301001 [INSPIRE].

  101. G.T. Horowitz and J. Polchinski, Instability of space-like and null orbifold singularities, Phys. Rev. D 66 (2002) 103512 [hep-th/0206228] [INSPIRE].

    ADS  Google Scholar 

  102. W. Fischler, A. Kashani-Poor, R. McNees and S. Paban, The Acceleration of the universe, a challenge for string theory, JHEP 07 (2001) 003 [hep-th/0104181] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. S. Hellerman, N. Kaloper and L. Susskind, String theory and quintessence, JHEP 06 (2001) 003 [hep-th/0104180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. G. Jorjadze, J. Plefka and J. Pollok, Bosonic String Quantization in Static Gauge, J. Phys. A 45 (2012) 485401 [arXiv:1207.4368] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  105. C. Krishnan and S. Roy, Higher Spin Resolution of a Toy Big Bang, Phys. Rev. D 88 (2013) 044049 [arXiv:1305.1277] [INSPIRE].

    ADS  Google Scholar 

  106. C. Krishnan, A. Raju and S. Roy, A Grassmann path from AdS 3 to flat space, JHEP 03 (2014) 036 [arXiv:1312.2941] [INSPIRE].

    Article  ADS  Google Scholar 

  107. C. Krishnan and S. Roy, Desingularization of the Milne Universe, Phys. Lett. B 734 (2014) 92 [arXiv:1311.7315] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. B. Craps, C. Krishnan and A. Saurabh, Low Tension Strings on a Cosmological Singularity, JHEP 08 (2014) 065 [arXiv:1405.3935] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. K.S. Kiran, C. Krishnan, A. Saurabh and J. Simón, Strings vs. Spins on the Null Orbifold, JHEP 12 (2014) 002 [arXiv:1408.3296] [INSPIRE].

  110. C. Krishnan and A. Raju, Gauging Away a Big Bang, J. Phys. Conf. Ser. 883 (2017) 012015 [arXiv:1504.04331] [INSPIRE].

    Article  Google Scholar 

  111. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  112. T. Banks and W. Fischler, An Holographic cosmology, hep-th/0111142 [INSPIRE].

  113. H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, CMR University, Bengaluru, 562149, India

    Sumit K. Garg

  2. Center for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India

    Chethan Krishnan

  3. International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, 560089, India

    M. Zaid Zaz

Authors
  1. Sumit K. Garg
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Chethan Krishnan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. Zaid Zaz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sumit K. Garg.

Additional information

ArXiv ePrint: 1810.09406

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garg, S.K., Krishnan, C. & Zaz, M.Z. Bounds on slow roll at the boundary of the landscape. J. High Energ. Phys. 2019, 29 (2019). https://doi.org/10.1007/JHEP03(2019)029

Download citation

  • Received: 19 November 2018

  • Revised: 26 January 2019

  • Accepted: 22 February 2019

  • Published: 06 March 2019

  • DOI: https://doi.org/10.1007/JHEP03(2019)029

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Flux compactifications
  • Superstring Vacua
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.