Skip to main content

Advertisement

SpringerLink
Combination of KLOE σ (e+e− → π+π−γ(γ)) measurements and determination of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}} \) in the energy range 0.10 < s < 0.95 GeV2
Download PDF
Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 28 March 2018

Combination of KLOE σ (e+e− → π+π−γ(γ)) measurements and determination of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}} \) in the energy range 0.10 < s < 0.95 GeV2

  • The KLOE-2 collaboration,
  • A. Anastasi5,3,
  • D. Babusci3,
  • M. Berlowski3,22,
  • C. Bloise3,
  • F. Bossi3,
  • P. Branchini19,
  • A. Budano18,19,
  • L. Caldeira Balkeståhl21,
  • B. Cao21,
  • F. Ceradini18,19,
  • P. Ciambrone3,
  • F. Curciarello3,
  • E. Czerwinski2,
  • G. D’Agostini14,15,
  • E. Danè3,
  • V. De Leo17,
  • E. De Lucia3,
  • A. De Santis3,
  • P. De Simone3,
  • A. Di Cicco18,19,
  • A. Di Domenico14,15,
  • D. Domenici3,
  • A. D’Uffizi3,
  • A. Fantini16,17,
  • G. Fantini4,
  • P. Fermani3,
  • S. Fiore20,15,
  • A. Gajos2,
  • P. Gauzzi14,15,
  • S. Giovannella3,
  • E. Graziani19,
  • V. L. Ivanov7,8,
  • T. Johansson21,
  • X. Kang3,
  • D. Kisielewska-Kaminska2,
  • E. A. Kozyrev7,8,
  • W. Krzemien22,
  • A. Kupsc21,
  • S. Loffredo18,19,
  • P. A. Lukin7,8,
  • G. Mandaglio6,1,
  • M. Martini3,13,
  • R. Messi16,17,
  • S. Miscetti3,
  • G. Morello3,
  • D. Moricciani17,
  • P. Moskal2,
  • A. Passeri19,
  • V. Patera12,15,
  • E. Perez del Rio3,
  • N. Raha17,
  • P. Santangelo3,
  • M. Schioppa10,11,
  • A. Selce18,19,
  • M. Silarski2,
  • F. Sirghi3,
  • E. P. Solodov7,8,
  • L. Tortora19,
  • G. Venanzoni9,
  • W. Wislicki22,
  • M. Wolke21,
  • A. Keshavarzi23,
  • S.E. Müller24 &
  • …
  • T. Teubner23 

Journal of High Energy Physics volume 2018, Article number: 173 (2018) Cite this article

  • 395 Accesses

  • 28 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The three precision measurements of the cross section σ(e+e− → π+π−γ(γ)) using initial state radiation by the KLOE collaboration provide an important input for the prediction of the hadronic contribution to the anomalous magnetic moment of the muon. These measurements are correlated for both statistical and systematic uncertainties and, therefore, the simultaneous use of these measurements requires covariance matrices that fully describe the correlations. We present the construction of these covariance matrices and use them to determine a combined KLOE measurement for σ(e+e− → π+π−γ(γ)). We find, from this combination, a two-pion contribution to the muon magnetic anomaly in the energy range 0.10 < s < 0.95 GeV2 of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}}=\left(489.8\pm {1.7}_{\mathrm{stat}}\pm {4.8}_{\mathrm{sys}}\right)\times {10}^{-10} \).

Data vectors and covariance matrices are available at http://www.lnf.infn.it/kloe/ppg/ppg_2017/ppg_2017.html.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. KLOE collaboration, F. Ambrosino et al., Measurement of σ(e + e − → π + π − γ(γ) and the dipion contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 670 (2009) 285 [arXiv:0809.3950] [INSPIRE].

  2. S. Müller et al., Measurement of the σ(e + e − → π + π − γ(γ)) and the dipion contribution to the muon anomaly with the KLOE detector, KLOE Note n. 221 (2008), http://www.lnf.infn.it/kloe/pub/knote/kn221.pdf.

  3. KLOE collaboration, F. Ambrosino et al., Measurement of σ(e + e − → π + π −) from threshold to 0.85 GeV 2 using Initial State Radiation with the KLOE detector, Phys. Lett. B 700 (2011) 102 [arXiv:1006.5313] [INSPIRE].

  4. P. Beltrame et al., Measurement of σ(e + e − → π + π −) for M 2 ππ between 0.1 and 0.85 GeV 2 using the Initial State Radiation method with the KLOE detector, KLOE Note n. 225 (2011), http://www.lnf.infn.it/kloe/ppg/ppg_2010/kn225.pdf.

  5. KLOE collaboration, D. Babusci et al., Precision measurement of σ(e + e − → π + π − γ)/σ(e + e − → μ + μ − γ) and determination of the π + π − contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 720 (2013) 336 [arXiv:1212.4524] [INSPIRE].

  6. P. Lukin et al., Precision measurement of the pion form factor |F π |2 from the π + π − γ/μ + μ − γ ratio and extraction of the dipion contribution to the muon anomaly with the KLOE detector, KLOE-2 Note K2PD-6 (2012), http://www.lnf.infn.it/kloe2/tools/getfile.php?doc_fname=K2PD-6.pdf&doc_ftype=docs.

  7. KLOE collaboration, A. Aloisio et al., Measurement of σ(e + e − → π + π − γ) and extraction of σ(e + e − → π + π − ) below 1-GeV with the KLOE detector, Phys. Lett. B 606 (2005) 12 [hep-ex/0407048] [INSPIRE].

  8. Muon g-2 collaboration, G.W. Bennett et al., Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 89 (2002) 101804 [Erratum ibid. 89 (2002) 129903] [hep-ex/0208001] [INSPIRE].

  9. Muon g-2 collaboration, G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].

  10. Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  11. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  12. A. Keshavarzi, D. Nomura and T. Teubner, The muon g − 2 and α(M 2 Z ): a new data-based analysis, arXiv:1802.02995 [INSPIRE].

  13. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M 2 Z ) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

  14. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to alpha(MZ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  15. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(m 2 Z ) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].

  16. F. Jegerlehner and A. Nyffeler, The Muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  17. F. Jegerlehner, Muon g − 2 theory: The hadronic part, EPJ Web Conf. 166 (2018) 00022 [arXiv:1705.00263] [INSPIRE].

    Article  Google Scholar 

  18. M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, Muon g − 2 estimates: can one trust effective Lagrangians and global fits?, Eur. Phys. J. C 75 (2015) 613 [arXiv:1507.02943] [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Ananthanarayan, I. Caprini, D. Das and I. Sentitemsu Imsong, Precise determination of the low-energy hadronic contribution to the muon g − 2 from analyticity and unitarity: An improved analysis, Phys. Rev. D 93 (2016) 116007 [arXiv:1605.00202] [INSPIRE].

    ADS  Google Scholar 

  20. Muon g-2 collaboration, J. Grange et al., Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].

  21. J-PARC g-2 collaboration, T. Mibe, New g − 2 experiment at J-PARC, Chin. Phys. C 34 (2010) 745 [INSPIRE].

  22. S.J. Brodsky and E. De Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev. 168 (1968) 1620 [INSPIRE].

    Article  ADS  Google Scholar 

  23. B.E. Lautrup and E. De Rafael, Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron, Phys. Rev. 174 (1968) 1835 [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Gallo et al., DAFNE status report, Conf. Proc. C 060626 (2006) 604 [INSPIRE].

    ADS  Google Scholar 

  25. W. Kluge, Initial state radiation: a success story, Nucl. Phys. Proc. Suppl. 181-182 (2008) 280 [arXiv:0805.4708] [INSPIRE].

    Article  ADS  Google Scholar 

  26. KLOE-2 collaboration, G. Venanzoni, From Hadronic Cross section to the measurement of the Vacuum Polarization at KLOE: a fascinating endeavour, EPJ Web Conf. 166 (2018) 00021 [arXiv:1705.10365] [INSPIRE].

  27. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov and L. Trentadue, Hadronic cross-sections in electron - positron annihilation with tagged photon, JHEP 12 (1998) 009 [hep-ph/9804430] [INSPIRE].

  28. M. Benayoun, S.I. Eidelman, V.N. Ivanchenko and Z.K. Silagadze, Spectroscopy at B factories using hard photon emission, Mod. Phys. Lett. A 14 (1999) 2605 [hep-ph/9910523] [INSPIRE].

  29. S. Binner, J.H. Kuhn and K. Melnikov, Measuring σ(e + e − → hadrons) using tagged photon, Phys. Lett. B 459 (1999) 279 [hep-ph/9902399] [INSPIRE].

  30. V.P. Druzhinin, S.I. Eidelman, S.I. Serednyakov and E.P. Solodov, Hadron Production via e + e − Collisions with Initial State Radiation, Rev. Mod. Phys. 83 (2011) 1545 [arXiv:1105.4975] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Rodrigo, H. Czyz, J.H. Kuhn and M. Szopa, Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24 (2002) 71 [hep-ph/0112184] [INSPIRE].

  32. H. Czyz, A. Grzelinska, J.H. Kuhn and G. Rodrigo, The Radiative return at phi and B factories: Small angle photon emission at next-to-leading order, Eur. Phys. J. C 27 (2003) 563 [hep-ph/0212225] [INSPIRE].

  33. H. Czyz, A. Grzelinska, J.H. Kuhn and G. Rodrigo, The Radiative return at Phi and B factories: FSR at next-to-leading order, Eur. Phys. J. C 33 (2004) 333 [hep-ph/0308312] [INSPIRE].

  34. H. Czyz, A. Grzelinska, J.H. Kuhn and G. Rodrigo, The Radiative return at phi and B factories: FSR for muon pair production at next-to-leading order, Eur. Phys. J. C 39 (2005) 411 [hep-ph/0404078] [INSPIRE].

  35. Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies collaboration, S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].

  36. F. Jegerlehner, Vacuum Polarisation Correction, (2016) www-com.physik.hu-berlin.de/∼fjeger/alphaQED16.tar.gz.

  37. F. Jegerlehner, Status and possible improvements of electroweak effective couplings for future precision experiments, talk at Linear Collider Workshop 2010, http://www-com.physik.hu-berlin.de/∼fjeger/SMalphas1.pdf.

  38. KLOE-2 collaboration, A. Anastasi et al., Measurement of the running of the fine structure constant below 1 GeV with the KLOE Detector, Phys. Lett. B 767 (2017) 485 [arXiv:1609.06631] [INSPIRE].

  39. A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative corrections in low energy e + e − collisions, Eur. Phys. J. C 24 (2002) 51 [hep-ph/0107154] [INSPIRE].

  40. F. Jegerlehner, Vacuum Polarisation Correction, (2003), https://www-com.physik.hu-berlin.de/∼fjeger/alphaQEDn.uu.

  41. KLOE combination π + π − γ (ppg) data web link (2017), http://www.lnf.infn.it/kloe/ppg/ppg_2017/ppg_2017.html.

  42. S. Müller, The Why’s and How’s of covariance matrices in the KLOE ISR analyses, in Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment, arXiv:1306.2045 [INSPIRE].

  43. G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. D’Agostini, Improved iterative Bayesian unfolding, arXiv:1010.0632.

  45. NNPDF collaboration, R.D. Ball et al., Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].

  46. S. Eidelman and F. Jegerlehner, Hadronic contributions to g − 2 of the leptons and to the effective fine structure constant α(M 2 z ), Z. Phys. C 67 (1995) 585 [hep-ph/9502298] [INSPIRE].

  47. M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e − → π + π − cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R.R. Akhmetshin et al., Measurement of the e + e − → π + π − cross section with the CMD-2 detector in the 370-520 MeV c.m. energy range, JETP Lett. 84 (2006) 413 [hep-ex/0610016] [INSPIRE].

  49. CMD-2 collaboration, R.R. Akhmetshin et al., High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector, Phys. Lett. B 648 (2007) 28 [hep-ex/0610021] [INSPIRE].

  50. CMD-2 collaboration, R.R. Akhmetshin et al., Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B 578 (2004) 285 [hep-ex/0308008] [INSPIRE].

  51. M.N. Achasov et al., Update of the e + e − → π + π − cross-section measured by SND detector in the energy region 400 < \( \sqrt{s} \) < 1000 MeV, J. Exp. Theor. Phys. 103 (2006) 380 [hep-ex/0605013] [INSPIRE].

  52. BaBar collaboration, B. Aubert et al., Precise measurement of the e + e − → π + π −(γ) cross section with the Initial State Radiation method at BABAR, Phys. Rev. Lett. 103 (2009) 231801 [arXiv:0908.3589] [INSPIRE].

  53. BESIII collaboration, M. Ablikim et al., Measurement of the e + e − → π + π − cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [arXiv:1507.08188] [INSPIRE].

  54. G.J. Gounaris and J.J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρ → e + e −, Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. INFN Sezione di Catania, Catania, Italy

    G. Mandaglio

  2. Institute of Physics, Jagiellonian University, Cracow, Poland

    E. Czerwinski, A. Gajos, D. Kisielewska-Kaminska, P. Moskal & M. Silarski

  3. Laboratori Nazionali di Frascati dell’INFN, Frascati, Italy

    A. Anastasi, D. Babusci, M. Berlowski, C. Bloise, F. Bossi, P. Ciambrone, F. Curciarello, E. Danè, E. De Lucia, A. De Santis, P. De Simone, D. Domenici, A. D’Uffizi, P. Fermani, S. Giovannella, X. Kang, M. Martini, S. Miscetti, G. Morello, E. Perez del Rio, P. Santangelo & F. Sirghi

  4. Gran Sasso Science Institute, L’Aquila, Italy

    G. Fantini

  5. Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Messina, Italy

    A. Anastasi

  6. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy

    G. Mandaglio

  7. Budker Institute of Nuclear Physics, Novosibirsk, Russia

    V. L. Ivanov, E. A. Kozyrev, P. A. Lukin & E. P. Solodov

  8. Novosibirsk State University, Novosibirsk, Russia

    V. L. Ivanov, E. A. Kozyrev, P. A. Lukin & E. P. Solodov

  9. INFN Sezione di Pisa, Pisa, Italy

    G. Venanzoni

  10. Dipartimento di Fisica, Università della Calabria, Rende, Italy

    M. Schioppa

  11. INFN Gruppo collegato di Cosenza, Rende, Italy

    M. Schioppa

  12. Dipartimento di Scienze di Base ed Applicate per l’Ingegneria, Università “Sapienza”, Roma, Italy

    V. Patera

  13. Dipartimento di Scienze e Tecnologie applicate, Università “Guglielmo Marconi”, Roma, Italy

    M. Martini

  14. Dipartimento di Fisica, Università “Sapienza”, Roma, Italy

    G. D’Agostini, A. Di Domenico & P. Gauzzi

  15. INFN Sezione di Roma, Roma, Italy

    G. D’Agostini, A. Di Domenico, S. Fiore, P. Gauzzi & V. Patera

  16. Dipartimento di Fisica, Università “Tor Vergata”, Roma, Italy

    A. Fantini & R. Messi

  17. INFN Sezione di Roma Tor Vergata, Roma, Italy

    V. De Leo, A. Fantini, R. Messi, D. Moricciani & N. Raha

  18. Dipartimento di Matematica e Fisica, Università “Roma Tre”, Roma, Italy

    A. Budano, F. Ceradini, A. Di Cicco, S. Loffredo & A. Selce

  19. INFN Sezione di Roma Tre, Roma, Italy

    P. Branchini, A. Budano, F. Ceradini, A. Di Cicco, E. Graziani, S. Loffredo, A. Passeri, A. Selce & L. Tortora

  20. ENEA, Department of Fusion and Technology for Nuclear Safety and Security, Frascati (RM), Italy

    S. Fiore

  21. Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

    L. Caldeira Balkeståhl, B. Cao, T. Johansson, A. Kupsc & M. Wolke

  22. National Centre for Nuclear Research, Warsaw, Poland

    M. Berlowski, W. Krzemien & W. Wislicki

  23. Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 3BX, U.K.

    A. Keshavarzi & T. Teubner

  24. Department of Information Services and Computing & Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

    S.E. Müller

Authors
  1. A. Anastasi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. D. Babusci
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. Berlowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. C. Bloise
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. F. Bossi
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. P. Branchini
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. A. Budano
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. L. Caldeira Balkeståhl
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. B. Cao
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. F. Ceradini
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. P. Ciambrone
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. F. Curciarello
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. E. Czerwinski
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. G. D’Agostini
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. E. Danè
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. V. De Leo
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. E. De Lucia
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. A. De Santis
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. P. De Simone
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. A. Di Cicco
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. A. Di Domenico
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. D. Domenici
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. A. D’Uffizi
    View author publications

    You can also search for this author in PubMed Google Scholar

  24. A. Fantini
    View author publications

    You can also search for this author in PubMed Google Scholar

  25. G. Fantini
    View author publications

    You can also search for this author in PubMed Google Scholar

  26. P. Fermani
    View author publications

    You can also search for this author in PubMed Google Scholar

  27. S. Fiore
    View author publications

    You can also search for this author in PubMed Google Scholar

  28. A. Gajos
    View author publications

    You can also search for this author in PubMed Google Scholar

  29. P. Gauzzi
    View author publications

    You can also search for this author in PubMed Google Scholar

  30. S. Giovannella
    View author publications

    You can also search for this author in PubMed Google Scholar

  31. E. Graziani
    View author publications

    You can also search for this author in PubMed Google Scholar

  32. V. L. Ivanov
    View author publications

    You can also search for this author in PubMed Google Scholar

  33. T. Johansson
    View author publications

    You can also search for this author in PubMed Google Scholar

  34. X. Kang
    View author publications

    You can also search for this author in PubMed Google Scholar

  35. D. Kisielewska-Kaminska
    View author publications

    You can also search for this author in PubMed Google Scholar

  36. E. A. Kozyrev
    View author publications

    You can also search for this author in PubMed Google Scholar

  37. W. Krzemien
    View author publications

    You can also search for this author in PubMed Google Scholar

  38. A. Kupsc
    View author publications

    You can also search for this author in PubMed Google Scholar

  39. S. Loffredo
    View author publications

    You can also search for this author in PubMed Google Scholar

  40. P. A. Lukin
    View author publications

    You can also search for this author in PubMed Google Scholar

  41. G. Mandaglio
    View author publications

    You can also search for this author in PubMed Google Scholar

  42. M. Martini
    View author publications

    You can also search for this author in PubMed Google Scholar

  43. R. Messi
    View author publications

    You can also search for this author in PubMed Google Scholar

  44. S. Miscetti
    View author publications

    You can also search for this author in PubMed Google Scholar

  45. G. Morello
    View author publications

    You can also search for this author in PubMed Google Scholar

  46. D. Moricciani
    View author publications

    You can also search for this author in PubMed Google Scholar

  47. P. Moskal
    View author publications

    You can also search for this author in PubMed Google Scholar

  48. A. Passeri
    View author publications

    You can also search for this author in PubMed Google Scholar

  49. V. Patera
    View author publications

    You can also search for this author in PubMed Google Scholar

  50. E. Perez del Rio
    View author publications

    You can also search for this author in PubMed Google Scholar

  51. N. Raha
    View author publications

    You can also search for this author in PubMed Google Scholar

  52. P. Santangelo
    View author publications

    You can also search for this author in PubMed Google Scholar

  53. M. Schioppa
    View author publications

    You can also search for this author in PubMed Google Scholar

  54. A. Selce
    View author publications

    You can also search for this author in PubMed Google Scholar

  55. M. Silarski
    View author publications

    You can also search for this author in PubMed Google Scholar

  56. F. Sirghi
    View author publications

    You can also search for this author in PubMed Google Scholar

  57. E. P. Solodov
    View author publications

    You can also search for this author in PubMed Google Scholar

  58. L. Tortora
    View author publications

    You can also search for this author in PubMed Google Scholar

  59. G. Venanzoni
    View author publications

    You can also search for this author in PubMed Google Scholar

  60. W. Wislicki
    View author publications

    You can also search for this author in PubMed Google Scholar

  61. M. Wolke
    View author publications

    You can also search for this author in PubMed Google Scholar

  62. A. Keshavarzi
    View author publications

    You can also search for this author in PubMed Google Scholar

  63. S.E. Müller
    View author publications

    You can also search for this author in PubMed Google Scholar

  64. T. Teubner
    View author publications

    You can also search for this author in PubMed Google Scholar

Consortia

The KLOE-2 collaboration

Corresponding authors

Correspondence to G. Venanzoni or A. Keshavarzi.

Additional information

ArXiv ePrint: 1711.03085

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The KLOE-2 collaboration., Anastasi, A., Babusci, D. et al. Combination of KLOE σ (e+e− → π+π−γ(γ)) measurements and determination of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}} \) in the energy range 0.10 < s < 0.95 GeV2. J. High Energ. Phys. 2018, 173 (2018). https://doi.org/10.1007/JHEP03(2018)173

Download citation

  • Received: 09 November 2017

  • Accepted: 03 March 2018

  • Published: 28 March 2018

  • DOI: https://doi.org/10.1007/JHEP03(2018)173

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • e+-e- Experiments
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.