Skip to main content

Advertisement

SpringerLink
Resonant production of Wh and Zh at the LHC
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 26 March 2018

Resonant production of Wh and Zh at the LHC

  • Antonio Dobado1,
  • Felipe J. Llanes-Estrada1 &
  • Juan J. Sanz-Cillero  ORCID: orcid.org/0000-0003-4712-04241 

Journal of High Energy Physics volume 2018, Article number: 159 (2018) Cite this article

  • 251 Accesses

  • 4 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We examine the production of Wh and Zh pairs at the LHC in the context of a Strongly Interacting Symmetry Breaking Sector of the Standard Model. Our description is based on a non-linear Higgs Effective Theory, including only the Standard Model particles. We focus on its scalar sector (Higgs boson h and electroweak Goldstones associated to W ± L and ZL), which is expected to give the strongest beyond Standard Model rescattering effects. The range of the effective theory is extended with dispersion-relation based unitarization, and compared to the alternative extension with explicit axial-vector resonances. We estimate the Wh and Zh production cross-section, where an intermediate axial-vector resonance is generated for certain values of the chiral couplings. We exemplify our analysis with a benchmark axial-vector with MA = 3 TeV. Interestingly enough, these different approaches provide essentially the same prediction. Finally we discuss the sensitivity of ATLAS and CMS to such resonances.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  2. C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].

    Article  Google Scholar 

  3. B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  4. M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  5. G.J. Gounaris, R. Kogerler and H. Neufeld, Relationship Between Longitudinally Polarized Vector Bosons and their Unphysical Scalar Partners, Phys. Rev. D 34 (1986) 3257 [INSPIRE].

    ADS  Google Scholar 

  6. A. Dobado and J.R. Peláez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].

  7. A. Dobado and J.R. Pelaez, The Equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [hep-ph/9404239] [INSPIRE].

  8. C. Grosse-Knetter and I. Kuss, The Equivalence theorem and effective Lagrangians, Z. Phys. C 66 (1995) 95 [hep-ph/9403291] [INSPIRE].

  9. H.-J. He, Y.-P. Kuang and X.-y. Li, Proof of the equivalence theorem in the chiral Lagrangian formalism, Phys. Lett. B 329 (1994) 278 [hep-ph/9403283] [INSPIRE].

  10. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  11. J.J. Sanz-Cillero, Resonances and loops: scale interplay in the Higgs effective field theory, in 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017) Venice, Italy, July 5-12, 2017, 2017, arXiv:1710.07611, http://inspirehep.net/record/1631815/files/arXiv:1710.07611.pdf [INSPIRE].

  12. A. Castillo, R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Top-antitop production from W + L W − L and Z L Z L scattering under a strongly interacting symmetry-breaking sector, Eur. Phys. J. C 77 (2017) 436 [arXiv:1607.01158] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R.L. Delgado et al., Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis, JHEP 11 (2017) 098 [arXiv:1707.04580] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  15. G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].

  16. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

  17. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

  18. T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].

    ADS  Google Scholar 

  19. A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].

    ADS  Google Scholar 

  20. A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].

  22. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  23. A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].

    Article  ADS  Google Scholar 

  24. R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → W + L W − L and γγ → Z L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149 [arXiv:1404.2866] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.J. Sanz-Cillero, Electroweak chiral Lagrangians and the Higgs properties at the one-loop level, EPJ Web Conf. 80 (2014) 00053 [arXiv:1409.6517] [INSPIRE].

    Article  Google Scholar 

  26. I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T Constraints on Electroweak Strongly-Coupled Models with a Light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].

    Article  ADS  Google Scholar 

  29. ATLAS collaboration, Search for Heavy Resonances Decaying to a W or Z Boson and a Higgs Boson in the \( q{\overline{q}}^{\left(\prime \right)}b\overline{b} \) Final State in pp Collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, ATLAS-CONF-2017-018 (2017).

  30. CMS collaboration, Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 636 [arXiv:1707.01303] [INSPIRE].

  31. H. Huang, Searches for diboson resonances at CMS, in 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai China (2017) [arXiv:1710.05230] [INSPIRE].

  32. CMS collaboration, Combination of searches for heavy resonances decaying to WW, WZ, ZZ, WH and ZH boson pairs in proton-proton collisions at \( \sqrt{s}=8 \) and 13 TeV, Phys. Lett. B 774 (2017) 533 [arXiv:1705.09171] [INSPIRE].

  33. G. Buchalla, O. Catá and C. Krause, On the Power Counting in Effective Field Theories, Phys. Lett. B 731 (2014) 80 [arXiv:1312.5624] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios, Phys. Rev. D 93 (2016) 055041 [arXiv:1510.03114] [INSPIRE].

    ADS  Google Scholar 

  35. A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Fingerprints of heavy scales in electroweak effective Lagrangians, JHEP 04 (2017) 012 [arXiv:1609.06659] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Dawson and G. Valencia, Heavy fermion effects on longitudinal gauge boson scattering, Phys. Lett. B 246 (1990) 156 [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  40. R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].

    Article  ADS  Google Scholar 

  41. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  42. J.A. Aguilar-Saavedra, J. Bernabéu, V.A. Mitsou and A. Segarra, The Z boson spin observables as messengers of new physics, Eur. Phys. J. C 77 (2017) 234 [arXiv:1701.03115] [INSPIRE].

    Article  ADS  Google Scholar 

  43. E. Maina, W boson polarization in vector boson scattering at the LHC, contribution to the EPS-HEP international conference on high energy physics, Venice Italy (2017), https://indico.cern.ch/event/466934/contributions/2575374/.

  44. R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations and resonances in strongly interacting W L W L , Z L Z L and hh scattering, Phys. Rev. D 91 (2015) 075017 [arXiv:1502.04841] [INSPIRE].

    ADS  Google Scholar 

  45. R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Possible new resonance from W L W L -hh interchannel coupling, Phys. Rev. Lett. 114 (2015) 221803 [arXiv:1408.1193] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Dobado, M.J. Herrero and T.N. Truong, Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering, Phys. Lett. B 235 (1990) 134 [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Dobado and J.R. Pelaez, A Global fit of ππ and πK elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47 (1993) 4883 [hep-ph/9301276] [INSPIRE].

  48. A. Dobado and J.R. Pelaez, The Inverse amplitude method in chiral perturbation theory, Phys. Rev. D 56 (1997) 3057 [hep-ph/9604416] [INSPIRE].

  49. E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].

    Article  ADS  Google Scholar 

  50. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Masjuan, J.J. Sanz-Cillero and J. Virto, Some Remarks on the Pade Unitarization of Low-Energy Amplitudes, Phys. Lett. B 668 (2008) 14 [arXiv:0805.3291] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Corbett, O.J.P. É boli and M.C. Gonzalez-Garcia, Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case, Phys. Rev. D 93 (2016) 015005 [arXiv:1509.01585] [INSPIRE].

  53. A. Gomez Nicola and J.R. Pelaez, Meson meson scattering within one loop chiral perturbation theory and its unitarization, Phys. Rev. D 65 (2002) 054009 [hep-ph/0109056] [INSPIRE].

  54. F.-K. Guo, P. Ruiz-Femenía and J.J. Sanz-Cillero, One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson, Phys. Rev. D 92 (2015) 074005 [arXiv:1506.04204] [INSPIRE].

  55. T.N. Truong, Chiral Perturbation Theory and Final State Theorem, Phys. Rev. Lett. 61 (1988) 2526 [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].

  57. D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev. D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE].

    ADS  Google Scholar 

  58. D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].

    ADS  Google Scholar 

  59. D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].

    ADS  Google Scholar 

  60. J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].

    ADS  Google Scholar 

  61. ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].

  62. ATLAS collaboration, Search for new resonances decaying to a W or Z boson and a Higgs boson in the \( {\ell}^{+}{\ell}^{-}b\overline{b},\kern0.5em \ell \nu b\overline{b}\kern0.5em and\kern0.5em \nu \overline{\nu}b\overline{b} \) channels with pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 765 (2017) 32 [arXiv:1607.05621] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Departamento de Física Teórica, Universidad Complutense de Madrid, Plaza de las Ciencias 1, 28040, Madrid, Spain

    Antonio Dobado, Felipe J. Llanes-Estrada & Juan J. Sanz-Cillero

Authors
  1. Antonio Dobado
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Felipe J. Llanes-Estrada
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Juan J. Sanz-Cillero
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Juan J. Sanz-Cillero.

Additional information

ArXiv ePrint: 1711.10310

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dobado, A., Llanes-Estrada, F.J. & Sanz-Cillero, J.J. Resonant production of Wh and Zh at the LHC. J. High Energ. Phys. 2018, 159 (2018). https://doi.org/10.1007/JHEP03(2018)159

Download citation

  • Received: 15 December 2017

  • Accepted: 25 February 2018

  • Published: 26 March 2018

  • DOI: https://doi.org/10.1007/JHEP03(2018)159

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chiral Lagrangians
  • Effective Field Theories
  • Higgs Physics
  • Technicolor and Composite Models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.